Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic conductors physical concepts

The electronic properties of organic conductors are discussed by physicists in terms of band structure and Fermi surface. The shape of the band structure is defined by the dispersion energy and characterizes the electronic properties of the material (semiconductor, semimetals, metals, etc.) the Fermi surface is the limit between empty and occupied electronic states, and its shape (open, closed, nested, etc.) characterizes the dimensionality of the electron gas. From band dispersion and filling one can easily deduce whether the studied material is a metal, a semiconductor, or an insulator (occurrence of a gap at the Fermi energy). The intra- and interchain band-widths can be estimated, for example, from normal-incidence polarized reflectance, and the densities of state at the Fermi level can be used in the modeling of physical observations. The Fermi surface topology is of importance to predict or explain the existence of instabilities of the electronic gas (nesting vector concept see Chapter 2 of this book). Fermi surfaces calculated from structural data can be compared to those observed by means of the Shubnikov-de Hass method in the case of two- or three-dimensional metals [152]. [Pg.197]


See other pages where Organic conductors physical concepts is mentioned: [Pg.25]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.33]    [Pg.35]    [Pg.37]    [Pg.39]    [Pg.41]    [Pg.43]    [Pg.45]    [Pg.47]    [Pg.49]    [Pg.51]    [Pg.53]    [Pg.55]    [Pg.57]    [Pg.59]    [Pg.61]    [Pg.63]    [Pg.65]    [Pg.67]    [Pg.69]    [Pg.71]    [Pg.73]    [Pg.2]    [Pg.505]    [Pg.32]    [Pg.253]    [Pg.29]    [Pg.799]    [Pg.705]    [Pg.728]   


SEARCH



Physical concepts

Physical organic

© 2024 chempedia.info