Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical purity excess

Mixtures containing equal quantities of enantiomers are called racemic mixtures Racemic mixtures are optically inactive Conversely when one enantiomer is present m excess a net rotation of the plane of polarization is observed At the limit where all the molecules are of the same handedness we say the substance is optically pure Optical purity or percent enantiomeric excess is defined as... [Pg.288]

The optical purity is numerical equivalent to the enantiomeric excess (e.e.), which is defined as... [Pg.76]

The 2,3-epoxy alcohols are often obtained in high optical purity (90% enantiomeric excess or higher), and are useful intermediates for further transformations. For example by nucleophilic ring opening the epoxide unit may be converted into an alcohol, a /3-hydroxy ether or a vicinal diol. [Pg.256]

With the stcrically constrained /(-amino alcohols N-P asymmetric amplification phenomena were observed similar to the effects found with 3-e.Y0-(dimethylamino)isoborneol (vide supra). Thus, alkylation of benzaldehyde with diethylzinc, catalyzed by a partially resolved catalyst N-P, gives 1-phenyl-1-propanol with an enantiomeric excess, which impressively exceeds the optical purity of the catalyst employed12. [Pg.168]

The synthesis of 4-alkyl-y-butyrolactones 13 and 5-alkyl-<5-valerolactones 14 can be achieved in high enantiomeric excess by alkylation of ethyl 4-oxobutanoate and ethyl 5-oxopentanoate (11, n = 2, 3). The addition of diethylzinc, as well as dimethylzinc, leads to hydroxy esters 12 in high optical purity. When methyl esters instead of ethyl esters are used as substrates, the enantioselectivity of the addition reaction is somewhat lower. Alkaline hydrolysis of the hydroxy esters 12, followed by spontaneous cyclization upon acidification, leads to the corresponding y-butyro- and -valerolactones32. [Pg.181]

A different non-classical approach to the resolution of sulphoxides was reported by Mikolajczyk and Drabowicz269-281. It is based on the fact that sulphinyl compounds very easily form inclusion complexes with /1-cyclodextrin. Since /1-cyclodextrin as the host molecule is chiral, its inclusion complexes with racemic guest substances used in an excess are mixtures of diastereoisomers that should be formed in unequal amounts. In this way a series of alkyl phenyl, alkyl p-tolyl and alkyl benzyl sulphoxides has been resolved. However, the optical purities of the partially resolved sulphoxides do not exceed 22% after... [Pg.287]

The submitters report obtaining the product in 99% yield. The enantiomeric excess of the Mosher ester of 3 was measured to be 98% using a Chiralcel OD column (40% 2-propanol/hexane). This optical purity measurement substantiated the optical purity assessment made by 111 NMR studies of 3 and racemic 3 prepared using a different method3. Addition of the chiral shift reagent tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorato]europium (III) resulted in clear resolution of the respective aromatic proton signals for the two enantiomers, which was demonstrated with the racemate. Under similar conditions, NMR analysis of 3 showed that within the detectable limits of the experiment (ca. <3%), there was none of the disfavored enantiomer. [Pg.58]

In an ideal DKR, where the substrate stays racemic throughout the reaction process, the optical purity depends only on the enantiomeric ratio (E) (ee =(E— 1)/ (E +1)), and is independent of the extent of conversion. The enantiomeric excess of the product formed under racemizing conditions is equal to the initial enantiomeric... [Pg.91]

Assuming a linear relationship between [a] and concentration, which is true for most cases, the optical purity is equal to the percent excess of one enantiomer over the other ... [Pg.155]

Similarly to the P-CHj group, secondary phosphine-boranes react smoothly in the presence of a base (BuLi, NaH) under mild conditions to afford other kinds of functionalized phosphine-boranes in good to high yields, without racemi-zation. Yet the success of deprotonation/treatment with an electrophile process to afford substituted phosphine derivatives without any loss in optical purity may depend on the deprotonation agents employed. Use of butyllithium usually provides the products with high enantiomeric excess in good to high yields [73]. [Pg.21]

In the enantioselective hydrogenation of isophorone in the presence of (-)-DHVIN modifier the best optical purity was afforded by small dispersion (<0,05) Pd black catalyst (up to 55%) (7). The influence of the preparation method of Pd black on the optical yield was reported (8). A correlation was found between the oxidation state of the metal surface and the enantioselectivity, the catalyst having more oxidised species on its surface giving higher enantiomeric excess, while the Pd black with lower surface area was more enantioselective. [Pg.525]

Rhodococcus erythropolis NCIMB 11540 has been employed as biocatalyst for the conversion of (R)- or (.S )-cyanohydrins to the corresponding (R)- or (S)-a-hydroxycarboxylic acids with an optical purity of up to >99% enatiomeric excess (ee) [27-29] the chiral cyanohydrins can separately be produced using hydroxynitrile lyase from Hevea braziliensis or from Prunus anygdalis [30]. Using the combined NHase-amidase enzyme system of the Rhodococcus erythropolis NCIMB 11 540, the chiral cyanohydrins were first hydrolyzed to the... [Pg.173]

Optical purities and ee (enantiomeric excess) are used here synonymously, and express the excess of one enantiomer over the other for example 50% ee means a 75%, 25% mixture of R and 5 forms. [Pg.339]

Remarkable success has been achieved by Fryzuk and Bosnich (247) using the complex [Rh(5,5-chiraphos)(COD)]+, where the chiral ligand 25,55-bis(diphenylphosphino)butane, a diphosphine chiral at carbons (25), is readily synthesized from 2R,3R-butane diol. TheZ-isomers of the prochiral a-N-acylaminoacrylic acid substrates were hydrogenated at ambient conditions to / -products with very high enantiomeric excess indeed, leucine and phenylalanine derivatives were obtained in complete optical purity. Catalytic deuteration was shown to lead to pure chiral f3-carbon centers as well as a-carbon centers in the leucine and phenylal-... [Pg.346]

Alcohols will serve as hydrogen donors for the reduction of ketones and imi-nium salts, but not imines. Isopropanol is frequently used, and during the process is oxidized into acetone. The reaction is reversible and the products are in equilibrium with the starting materials. To enhance formation of the product, isopropanol is used in large excess and conveniently becomes the solvent. Initially, the reaction is controlled kinetically and the selectivity is high. As the concentration of the product and acetone increase, the rate of the reverse reaction also increases, and the ratio of enantiomers comes under thermodynamic control, with the result that the optical purity of the product falls. The rhodium and iridium CATHy catalysts are more active than the ruthenium arenes not only in the forward transfer hydrogenation but also in the reverse dehydrogenation. As a consequence, the optical purity of the product can fall faster with the... [Pg.1224]

In many cases the solvent was observed to have a large effect on the optical purity of the product. Examples of this, with a ketone and the rhodium cp TsDPEN catalyst, are shown in Table 35.3. Further optimization of this reaction improved the enantiomeric excess to 98%. A second example involved the reduction of 4-fluoroacetophenone in this case the enantioselectivity was largely unaffected, but the rate of reduction changed markedly with solvent. Development of this process improved the optical purity to 98.5% ee. [Pg.1228]

The application of a chiral auxiliary or catalyst, in either stoichiometric or catalytic fashion, has been a common practice in asymmetric synthesis, and most of such auxiliaries are available in homochiral form. Some processes of enantiodifferentiation arise from diastereomeric interactions in racemic mixtures and thus cause enhanced enantioselectivity in the reaction. In other words, there can be a nonlinear relationship between the optical purity of the chiral auxiliary and the enantiomeric excess of the product. One may expect that a chiral ligand, not necessarily in enantiomerically pure form, can lead to high levels of asymmetric induction via enantiodiscrimination. In such cases, a nonlinear relationship (NLE) between the ee of the product and the ee of the chiral ligand may be observed. [Pg.492]

Figure 8-1 depicts the relationship between the optical purity of the chiral catalyst and the ee of the product. In a simplified case, when two enantiomeric chiral ligands (LR or Ls) are attached to a metal center (M), complexes ML2 may be formed as the reactive species. Three complexes are possible MLRLS, MLrLr, and MLsLs. Supposing that LR is in excess and the stability constant for the muw-complex MLRLS is greater than that of the chiral complexes, if mt, w-MLR Ls is the more active catalyst, a lower than expected ee will be obtained [(—)-NLEs, curve 3 in Fig. 8-7], The ee will be higher than expected if the me.w-catalyst is less reactive than MLRLR or MLSLS [(+)-NLEs, curve 2 in Fig. 8-7],... Figure 8-1 depicts the relationship between the optical purity of the chiral catalyst and the ee of the product. In a simplified case, when two enantiomeric chiral ligands (LR or Ls) are attached to a metal center (M), complexes ML2 may be formed as the reactive species. Three complexes are possible MLRLS, MLrLr, and MLsLs. Supposing that LR is in excess and the stability constant for the muw-complex MLRLS is greater than that of the chiral complexes, if mt, w-MLR Ls is the more active catalyst, a lower than expected ee will be obtained [(—)-NLEs, curve 3 in Fig. 8-7], The ee will be higher than expected if the me.w-catalyst is less reactive than MLRLR or MLSLS [(+)-NLEs, curve 2 in Fig. 8-7],...
The enzyme p-ethylphenol methylene hydroxylase (EPMH), which is very similar to PCMH, can also be obtained from a special Pseudomonas putida strain. This enzyme catalyzes the oxidation of p-alkylphenols with alkyl chains from C2 to C8 to the optically active p-hydroxybenzylic alcohols. We used this enzyme in the same way as PCMH for continuous electroenzymatie oxidation of p-ethylphenol in the electrochemical enzyme membrane reactor with PEG-ferrocene 3 (MW 20 000) as high molecular weight water soluble mediator. During a five day experiment using a 16 mM concentration of p-ethylphenol, we obtained a turnover of the starting material of more than 90% to yield the (f )-l-(4 -hydroxyphenyl)ethanol with 93% optical purity and 99% enantiomeric excess (glc at a j -CD-phase) (Figure 14). The (S)-enantiomer was obtained by electroenzymatie oxidation using PCMH as production enzyme. [Pg.105]

Recent advances in gas chromatographic separations of enantiomers allow precise determination of the enantiomeric purity of the algal pheromones. The czs-disubstituted cyclopentenes, such as multifidene, viridiene, and caudoxirene, are of high optical purity [ 95% enantiomeric excess (e.e.)] whenever they have been found (32,33). The situation is different with the cyclopropanes and the cycloheptadienes, as shown in Table 2 and Figure 1. Hormosirene from female gametes or thalli of... [Pg.101]


See other pages where Optical purity excess is mentioned: [Pg.288]    [Pg.288]    [Pg.146]    [Pg.905]    [Pg.71]    [Pg.75]    [Pg.123]    [Pg.255]    [Pg.155]    [Pg.172]    [Pg.285]    [Pg.314]    [Pg.231]    [Pg.71]    [Pg.75]    [Pg.158]    [Pg.170]    [Pg.158]    [Pg.332]    [Pg.339]    [Pg.340]    [Pg.345]    [Pg.158]    [Pg.250]    [Pg.1217]    [Pg.21]    [Pg.126]    [Pg.79]   


SEARCH



Enantiomeric Excess and Optical Purity

Optical purity

© 2024 chempedia.info