Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Opposites relationship between

Analysis of structure-activity relationships shows that various species characterized by different reactivities exist on the surface of vanadium oxide-based catalysts.339 The redox cycle between V5+ and V4+ is generally accepted to play a key role in the reaction mechanism, although opposite relationships between activity and selectivity, and reducibility were established. More recent studies with zirconia-supported vanadium oxide catalysts showed that vanadium is present in the form of isolated vanadyl species or oligomeric vanadates depending on the loading.345,346 The maximum catalytic activity was observed for catalysts with vanadia content of 3-5 mol% for which highly dispersed polyvanadate species are dominant. [Pg.64]

As with all thermodynamic relations, the Kelvin equation may be arrived at along several paths. Since the occurrence of capillary condensation is intimately, bound up with the curvature of a liquid meniscus, it is helpful to start out from the Young-Laplace equation, the relationship between the pressures on opposite sides of a liquid-vapour interface. [Pg.118]

Pure miantiomeric substances show rotations that are equal in magnitude but opposite in direction. Unequal mixtures of enantiomers rotate light in proportion to the composition. The relationship between optical purity and measured rotation is... [Pg.76]

The stereochemistry of the most fundamental reaction types such as addition, substitution, and elimination are described by terms which specify the stereochemical relationship between the reactants and products. Addition and elimination reactions are classified as syn or anti, depending on whether the covalent bonds which are made or broken are on the same face or opposite faces of the plane of the double bond. [Pg.97]

Attack ty acetate at C-1 of C-2 would be equally likely and would result in equal amounts of the enantiomeric acetates. The acetate ester would be exo because reaction must occur from the direction opposite the bridging interaction. The nonclassical ion can be formed directly only from the exo-brosylate because it has the proper anti relationship between the C(l)—C(6) bond and the leaving group. The bridged ion can be formed from the endo-brosylate only after an unassisted ionization. This would explain the rate difference between the exo and endo isomers. [Pg.328]

Nitroalkanes show a related relationship between kinetic acidity and thermodynamic acidity. Additional alkyl substituents on nitromethane retard the rate of proton removal although the equilibrium is more favorable for the more highly substituted derivatives. The alkyl groups have a strong stabilizing effect on the nitronate ion, but unfavorable steric effects are dominant at the transition state for proton removal. As a result, kinetic and thermodynamic acidity show opposite responses to alkyl substitution. [Pg.422]

The relationship between 20 and reserpine (1) is close like reserpine, intermediate 20 possesses the linear chain of all five rings and all six stereocenters. With the exception of the 3,4,5-tri-methoxybenzoate grouping, 20 differs from reserpine (1) in one very important respect the orientation of the ring C methine hydrogen at C-3 in 20 with respect to the molecular plane is opposite to that found in reserpine. Intermediate 20 is a reserpate stereoisomer, epimeric at position 3, and its identity was secured by comparison of its infrared spectrum with that of a sample of (-)-methyl-O-acetyl-isoreserpate, a derivative of reserpine itself.9 Intermediate 20 is produced by the addition of hydride to the more accessible convex face of 19, and it rests comfortably in a conformation that allows all of the large groups attached to the D/E ring skeleton to be equatorially disposed. [Pg.61]

The ligands of a tetrahedral complex occupy the comers of a tetrahedron rather than the comers of a square. The symmetry relationships between the d orbitals and these ligands are not easy to visualize, but the splitting pattern of the d orbitals can be determined using geometry. The result is the opposite of the pattern found in octahedral... [Pg.1462]

Figure 2 displays a qualitative correlation between the increase or decrease in CO desorption temperature and relative shifts in surface core-level binding energies (Pd(3d5/2), Ni(2p3/2), or Cu(2p3/2) all measured before adsorbing CO) [66]. In general, a reduction in BE of a core level is accompanied by an enhancement in the strength of the bond between CO and the supported metal monolayer. Likewise, an opposite relationship is observed for an increase in core-level BE. The correlation observed in Figure 2 can be explained in terms of a model based on initial-state effects . The chemisorption bond on metal is dominated by the electron density of the occupied metal orbital to the lowest unoccupied 27t -orbital of CO. A shift towards lower BE decreases the separation of E2 t-Evb thus the back donation increases and vice versa. [Pg.85]

Thus, the inertia of the tunneling particle leads to two opposite effects a decrease of the transition probability due to the reorganization along the coordinate of the center of mass and an increase of the transition probability due to the increase of the Franck-Condon factor of the tunneling particle. Unlike the result in Ref. 66, it is found in Ref. 67 that for ordinary relationships between the physical parameters, the inertia leads to an increase of the transition probability. [Pg.151]


See other pages where Opposites relationship between is mentioned: [Pg.61]    [Pg.328]    [Pg.658]    [Pg.182]    [Pg.191]    [Pg.139]    [Pg.217]    [Pg.226]    [Pg.195]    [Pg.61]    [Pg.328]    [Pg.658]    [Pg.182]    [Pg.191]    [Pg.139]    [Pg.217]    [Pg.226]    [Pg.195]    [Pg.478]    [Pg.244]    [Pg.45]    [Pg.217]    [Pg.71]    [Pg.70]    [Pg.112]    [Pg.239]    [Pg.294]    [Pg.70]    [Pg.591]    [Pg.70]    [Pg.293]    [Pg.186]    [Pg.16]    [Pg.19]    [Pg.116]    [Pg.91]    [Pg.115]    [Pg.123]    [Pg.727]    [Pg.1104]    [Pg.135]    [Pg.136]    [Pg.210]    [Pg.23]    [Pg.180]    [Pg.412]    [Pg.586]    [Pg.161]    [Pg.149]    [Pg.296]   
See also in sourсe #XX -- [ Pg.60 , Pg.62 ]




SEARCH



Opposite

Opposition

Oppositional

© 2024 chempedia.info