Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1-OHP

IHP) (the Helmholtz condenser formula is used in connection with it), located at the surface of the layer of Stem adsorbed ions, and an outer Helmholtz plane (OHP), located on the plane of centers of the next layer of ions marking the beginning of the diffuse layer. These planes, marked IHP and OHP in Fig. V-3 are merely planes of average electrical property the actual local potentials, if they could be measured, must vary wildly between locations where there is an adsorbed ion and places where only water resides on the surface. For liquid surfaces, discussed in Section V-7C, the interface will not be smooth due to thermal waves (Section IV-3). Sweeney and co-workers applied gradient theory (see Chapter III) to model the electric double layer and interfacial tension of a hydrocarbon-aqueous electrolyte interface [27]. [Pg.179]

The treatment may be made more detailed by supposing that the rate-determining step is actually from species O in the OHP (at potential relative to the solution) to species R similarly located. The effect is to make fi dependent on the value of 2 and hence on any changes in the electrical double layer. This type of analysis has permitted some detailed interpretations to be made of kinetic schemes for electrode reactions and also connects that subject to the general one of this chapter. [Pg.214]

The layer of solvent molecules not directly adjacent to the metal is the closest distance of approach of solvated cations. Since the enthalpy of solvation of cations is nomially substantially larger than that of anions, it is nomially expected that tiiere will be insufBcient energy to strip the cations of their iimer solvation sheaths, and a second imaginary plane can be drawn tlirough the centres of the solvated cations. This second plane is temied the outer Helmholtz plane (OHP). [Pg.586]

Outside the OHP, there may still be an electric field and hence an imbalance of anions and cations extending in the fomi of a diffuse layer into the solution. [Pg.586]

The outer Helmholtz plane (OHP) refers to the distance of closest approach of non specifically adsorbed ions, generally cations. The interactions of the ions of the OHP with the surface are not specific and have the character of longer range coulombic interactions. Cations that populate the outer Helmholtz plane are usually solvated and are generally larger in size than the anions. [Pg.510]

Electrically, the electrical double layer may be viewed as a capacitor with the charges separated by a distance of the order of molecular dimensions. The measured capacitance ranges from about two to several hundred microfarads per square centimeter depending on the stmcture of the double layer, the potential, and the composition of the electrode materials. Figure 4 illustrates the behavior of the capacitance and potential for a mercury electrode where the double layer capacitance is about 16 p.F/cm when cations occupy the OHP and about 38 p.F/cm when anions occupy the IHP. The behavior of other electrode materials is judged to be similar. [Pg.511]

Fig. 1. Schematic representation of the electrochemical or diffuse double layer showing the inner (IHP) and outer (OHP) Helmholtz planes and the... Fig. 1. Schematic representation of the electrochemical or diffuse double layer showing the inner (IHP) and outer (OHP) Helmholtz planes and the...
Fig. 1. The structure of the electrical double layer where Q represents the solvent CD, specifically adsorbed anions 0, anions and (D, cations. The inner Helmholtz plane (IHP) is the center of specifically adsorbed ions. The outer Helmholtz plane (OHP) is the closest point of approach for solvated cations or molecules. O, the corresponding electric potential across the double layer, is also shown. Fig. 1. The structure of the electrical double layer where Q represents the solvent CD, specifically adsorbed anions 0, anions and (D, cations. The inner Helmholtz plane (IHP) is the center of specifically adsorbed ions. The outer Helmholtz plane (OHP) is the closest point of approach for solvated cations or molecules. O, the corresponding electric potential across the double layer, is also shown.
FIGURE 1-11 Schematic representation of the electrical double layer. IHP = inner Helmholtz plane OHP = outer Helmoltz plane. [Pg.19]

The inner layer (closest to the electrode), known as the inner Helmholtz plane (IHP), contains solvent molecules and specifically adsorbed ions (which are not hilly solvated). It is defined by the locus of points for the specifically adsorbed ions. The next layer, the outer Helmholtz plane (OHP), reflects the imaginary plane passing through the center of solvated ions at then closest approach to the surface. The solvated ions are nonspecifically adsorbed and are attracted to the surface by long-range coulombic forces. Both Helmholtz layers represent the compact layer. Such a compact layer of charges is strongly held by the electrode and can survive even when the electrode is pulled out of the solution. The Helmholtz model does not take into account the thermal motion of ions, which loosens them from the compact layer. [Pg.19]

The outer layer (beyond the compact layer), referred to as the diffuse layer (or Gouy layer), is a three-dimensional region of scattered ions, which extends from the OHP into the bulk solution. Such an ionic distribution reflects the counterbalance between ordering forces of the electrical field and the disorder caused by a random thermal motion. Based on the equilibrium between these two opposing effects, the concentration of ionic species at a given distance from the surface, C(x), decays exponentially with the ratio between the electro static energy (zF) and the thermal energy (R 7). in accordance with the Boltzmann equation ... [Pg.19]

Substituting Eqs. (35) and (36) into Eq. (34), the electrochemical potential fluctuation of dissolved metal ions at OHP is deduced. Then, disregarding the fluctuation of the chemical potential due to surface deformation, the local equilibrium of reaction is expressed as fi% = 0. With the approximation cm x, y, 0, if cm(x, y, (a, tf, we can thus derive the following equation,... [Pg.253]

As shown in Fig. 24, the mechanism of the instability is elucidated as follows At the portion where dissolution is accidentally accelerated and is accompanied by an increase in the concentration of dissolved metal ions, pit formation proceeds. If the specific adsorption is strong, the electric potential at the OHP of the recessed part decreases. Because of the local equilibrium of reaction, the fluctuation of the electrochemical potential must be kept at zero. As a result, the concentration component of the fluctuation must increase to compensate for the decrease in the potential component. This means that local dissolution is promoted more at the recessed portion. Thus these processes form a kind of positive feedback cycle. After several cycles, pits develop on the surface macroscopically through initial fluctuations. [Pg.257]

All these results assert the feasibility of the PLGS concept. A demonstrator to evaluate performances on the sky is now being studied. It will be first run at the coude focus of the 1.5m telescope at OHP. [Pg.269]

Figure 4.3 Schematic diagram of the electrochemical metal—aqueous interface, with the electrode, inner layer, diffuse layer, outer Helmholtz plane (OHP), and inner-layer thickness Xji indicated. Figure 4.3 Schematic diagram of the electrochemical metal—aqueous interface, with the electrode, inner layer, diffuse layer, outer Helmholtz plane (OHP), and inner-layer thickness Xji indicated.
Fig. 4.1 Structure of the electric double layer and electric potential distribution at (A) a metal-electrolyte solution interface, (B) a semiconductor-electrolyte solution interface and (C) an interface of two immiscible electrolyte solutions (ITIES) in the absence of specific adsorption. The region between the electrode and the outer Helmholtz plane (OHP, at the distance jc2 from the electrode) contains a layer of oriented solvent molecules while in the Verwey and Niessen model of ITIES (C) this layer is absent... Fig. 4.1 Structure of the electric double layer and electric potential distribution at (A) a metal-electrolyte solution interface, (B) a semiconductor-electrolyte solution interface and (C) an interface of two immiscible electrolyte solutions (ITIES) in the absence of specific adsorption. The region between the electrode and the outer Helmholtz plane (OHP, at the distance jc2 from the electrode) contains a layer of oriented solvent molecules while in the Verwey and Niessen model of ITIES (C) this layer is absent...
The potential difference of significance here is that between the metal and the ion in the OHP, which is denoted A0 this can be systematically varied by varying the electrode potential. If A0 = A0 when the two curves for O + eM and R are symmetrical, then ... [Pg.21]


See other pages where 1-OHP is mentioned: [Pg.594]    [Pg.176]    [Pg.526]    [Pg.510]    [Pg.49]    [Pg.63]    [Pg.45]    [Pg.457]    [Pg.46]    [Pg.63]    [Pg.20]    [Pg.222]    [Pg.252]    [Pg.257]    [Pg.267]    [Pg.168]    [Pg.168]    [Pg.1510]    [Pg.283]    [Pg.98]    [Pg.99]    [Pg.111]    [Pg.123]    [Pg.457]    [Pg.457]    [Pg.457]    [Pg.458]    [Pg.458]    [Pg.14]    [Pg.15]    [Pg.21]    [Pg.22]    [Pg.28]   
See also in sourсe #XX -- [ Pg.128 ]

See also in sourсe #XX -- [ Pg.126 ]




SEARCH



OHP . See

OHp = outer Helmholtz plane

© 2024 chempedia.info