Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of threonine

Amino-4,6-dimethyl-3-oxo-3//-phenoxazine-l,9-dicarboxylic acid also named actinocin is the chromophor of the red antineoplastic chromopeptide aetinomyein D (formula A). Two cyclopenta-peptide lactone rings (amino acids L-threonine, D-valine, L-proline, sarcosine, and 7V-methyl-L-valine) are attached to the carboxy carbons of actinocin by two amide bonds involving the amino groups of threonine. [Pg.246]

Quaternary salts of the substances represented by tliese formulae have been prepared by Kogl, Veldstra and van der Laan as well as of the next lower homologues, the substituted butyraldehydes, and the methyl ethers of both series. Their pharmacological activities were negligible in comparison with that of muscarine, but as six stereoisomeric forms may be produced in each synthesis, the inactivity may be due to stereoisomerism, just as in the case of threonine (a-amino-)3-hydroxy-butyric acid) where West and Carter found that only the d —) form is... [Pg.659]

Note carefully the difference between enantiomers and diastereomers. Enantiomers have opposite configurations at all chirality centers, whereas diastereomers have opposite configurations at some (one or more) chirality centers but the same configuration at others. A full description of the four stereoisomers of threonine is given in Table 9.2. Of the four, only the 2S,3R isomer, [o]D= -28.3, occurs naturally in plants and animals and is an essential human nutrient. This result is typical most biological molecules are chiral, and usually only one stereoisomer is found in nature. [Pg.303]

Table 9.2 I Relationships among the Four Stereoisomers of Threonine... Table 9.2 I Relationships among the Four Stereoisomers of Threonine...
G-protein-coupled receptor kinases (GRKs) are a family of enzymes that catalyze the phosphorylation of threonine or serine residues on G-protein-coupled receptors. Characteristically, GRKs only phosphorylate the ligand-activated form of the receptors. Phosphorylation by GRKs usually leads to impaired receptor/G-protein coupling. [Pg.559]

Peptidases have been classified by the MEROPS system since 1993 [2], which has been available viatheMEROPS database since 1996 [3]. The classification is based on sequence and structural similarities. Because peptidases are often multidomain proteins, only the domain directly involved in catalysis, and which beais the active site residues, is used in comparisons. This domain is known as the peptidase unit. Peptidases with statistically significant peptidase unit sequence similarities are included in the same family. To date 186 families of peptidase have been detected. Examples from 86 of these families are known in humans. A family is named from a letter representing the catalytic type ( A for aspartic, G for glutamic, M for metallo, C for cysteine, S for serine and T for threonine) plus a number. Examples of family names are shown in Table 1. There are 53 families of metallopeptidases (24 in human), 14 of aspartic peptidases (three of which are found in human), 62 of cysteine peptidases (19 in human), 42 of serine peptidases (17 in human), four of threonine peptidases (three in human), one of ghitamicpeptidases and nine families for which the catalytic type is unknown (one in human). It should be noted that within a family not all of the members will be peptidases. Usually non-peptidase homologues are a minority and can be easily detected because not all of the active site residues are conserved. [Pg.877]

Whereas SHMT in vivo has a biosynthetic function, threonine aldolase catalyzes the degradation of threonine both l- and D-spedfic ThrA enzymes are known [16,192]. Typically, ThrA enzymes show complete enantiopreference for their natural a-D- or a-t-amino configuration but, with few exceptions, have only low specificity for the relative threo/erythro-configuration (e.g. (122)/(123)) [193]. Likewise, SHMT is highly selective for the L-configuration, but has poor threo/erythro selectivity [194]. For biocatalytic applications, the knovm SHMT, d- and t-ThrA show broad substrate tolerance for various acceptor aldehydes, notably induding aromatic aldehydes [193-196] however, a,P-unsaturated aldehydes are not accepted [197]. For preparative reactions, excess of (120) must compensate for the unfavorable equilibrium constant [34] to achieve economical yields. [Pg.308]

All of the carbons of glycine, serine, alanine, and cysteine and two carbons of threonine form pyruvate and subsequently acetyl-CoA. [Pg.250]

Figure 30-10. Conversion of threonine to glycine (see Figure 30-6) and acetyl-CoA. Figure 30-10. Conversion of threonine to glycine (see Figure 30-6) and acetyl-CoA.
A simple and rapid method of separating optical isomers of amino acids on a reversed-phase plate, without using impregnated plates or a chiral mobile phase, was described by Nagata et al. [27]. Amino acids were derivatized with /-fluoro-2,4-dinitrophenyl-5-L-alanine amide (FDAA or Marfey s reagent). Each FDAA amino acid can be separated from the others by two-dimensional elution. Separation of L- and D-serine was achieved with 30% of acetonitrile solvent. The enantiomers of threonine, proline, and alanine were separated with 35% of acetonitrile solvent and those of methionine, valine, phenylalanine, and leucine with 40% of acetonitrile solvent. The spots were scraped off the plate after the... [Pg.211]

On the other hand, resonance assignments for CP of threonine and serine, and C and Cy of hydroxy proline, were difficult to make, because of their proximity to carbohydrate carbon resonances. In most cases then, the resonances were assigned on the basis of the effects of pH on the chemical shifts of those resonances. It was shown that the chemical shifts for the carbohydrate carbon resonances were virtually unaffected (AS 0.4 p.p.m.) when going from the cationic state (pH 2) to the anionic state (pH 11) of the amino acid residues. The chemical shifts of C and CP of the amino acid residues, however, shifted considerably (up to 3.1 and 6.6 p.p.m. for C" and CP, respectively see Table VI). [Pg.24]

Sebastian, B., Kakizuka, A., and Hunter, T. (1993). Cdc2M2 activation of cyclin-dependent kinase by dephosphorylation of threonine-14 and tyrosine-15 Proc. Natl. Acad. Sci. USA 90 3521-3524. [Pg.50]

The wild type ilvA gene was modified to target the protein to the plastid and expressed in A. thaliana. Transgenic plants showed a 20-fold increase in levels of 2-ketobutyrate as well as a large increase in 2-aminobutyrate, the transaminated product of 2-ketobutyrate [27, 41]. The levels of threonine remained stable whereas isoleucine concentration increased. Constitutive expression of the ilvA protein along with bktB, phaA, and phaC proteins in the plastids of A. thaliana led to the synthesis of poly(3HB-co-3HV) in the range of 0.2 - 0.8 % dry weight, with a HV level between 4-17 mol % [27,41]. Co-expression of the iso-... [Pg.215]

The four diastereomers of threonine (2-amino-3-hydroxybutanoic acid)... [Pg.201]

Symington SB, Frisbie RK, Kim HJ, Clark JM (2007) Mutation of threonine 422 to glutamic acid mimics the phosphorylation state and alters the action of deltamethrin on Cav2.2. Pestic Biochem Physiol 88 312-320... [Pg.71]

The recent review on vitamin Bi2 in this series (G18) provides an excellent survey. In current research emphasis is placed on the biosynthesis and the coenzyme forms of vitamin Bi2 (R2). Similarity between biosynthesis of porphyrin and vitamin Bi2 was shown by the incorporation of 6 -aminolevulic acid into the vitamin by a microorganism (S4). The l-amino-2-propanol moiety of vitamin Bj2 may be formed by decarboxylation of threonine (K10). Nothing is yet known about the nature of the precursors of the dimethylbenzimidazole portion of vitamin Bi2. [Pg.225]

Differently from serine, ESI-MS analysis of homoserine (HSer) solutions reveals an unusually abundant diprotonated homoserine octamers [(HSer)g-2H], but not the expected monoprotonated [(HSer)g H]" one." A 3/1 mixture of L-serine and L-homoserine yields abundant mixed serine octamers with the incorporation of one or two homoserine molecules into the cluster. CID of the isolated [(Ser)6(HSer)2-H] cluster leads to the preferentially loss of two neutral serine molecules. Homoserine is always retained. The ESl-MS spectral patterns of threonine and allothreonine solutions is similar to that of homoserine. A 1/1 mixture of D-serine and D-threonine yields abundant mixed singly- and doubly-charged octamers incorporating from 2 to 6 threonine molecules. Their relative abundance indicates that threonine may incorporate freely into serine clusters because the additional methyl group does not interfere with the bonding of the cluster. [Pg.212]


See other pages where Of threonine is mentioned: [Pg.45]    [Pg.339]    [Pg.49]    [Pg.247]    [Pg.248]    [Pg.181]    [Pg.79]    [Pg.189]    [Pg.1022]    [Pg.741]    [Pg.310]    [Pg.162]    [Pg.18]    [Pg.467]    [Pg.233]    [Pg.24]    [Pg.27]    [Pg.215]    [Pg.215]    [Pg.34]    [Pg.221]    [Pg.62]    [Pg.137]    [Pg.31]    [Pg.231]    [Pg.260]    [Pg.277]    [Pg.239]    [Pg.5]    [Pg.162]    [Pg.46]    [Pg.427]    [Pg.224]   
See also in sourсe #XX -- [ Pg.15 , Pg.30 ]




SEARCH



Threonin

Threoninal

Threonine

© 2024 chempedia.info