Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Number of hydrogen bonds

The flic presented contains 11 data items. The header lines arc property names as used by CACTVS [64, 65], and arc sufficiently self-descriptive. For example, E NHDONORS is the number of hydrogen bond donor.s, E SM1LES" is the SMILES string representing the structure of sulfamidc, and E LOGP is the logP value (octanol/water partition coefficient) for this substance. [Pg.51]

Modem understanding of the hydrophobic effect attributes it primarily to a decrease in the number of hydrogen bonds that can be achieved by the water molecules when they are near a nonpolar surface. This view is confirmed by computer simulations of nonpolar solutes in water [15]. To a first approximation, the magnimde of the free energy associated with the nonpolar contribution can thus be considered to be proportional to the number of solvent molecules in the first solvation shell. This idea leads to a convenient and attractive approximation that is used extensively in biophysical applications [9,16-18]. It consists in assuming that the nonpolar free energy contribution is directly related to the SASA [9],... [Pg.139]

Molecular dynamics simulations have also been used to interpret phase behavior of DNA as a function of temperature. From a series of simulations on a fully solvated DNA hex-amer duplex at temperatures ranging from 20 to 340 K, a glass transition was observed at 220-230 K in the dynamics of the DNA, as reflected in the RMS positional fluctuations of all the DNA atoms [88]. The effect was correlated with the number of hydrogen bonds between DNA and solvent, which had its maximum at the glass transition. Similar transitions have also been found in proteins. [Pg.448]

FIG. 13 Average number of hydrogen bonds (for definition see text) as a function of p in five simulations at different levels of hydration in a Vycor pore. Full hues show the number of water-water bonds, long-dashed hnes show the number of bonds between water molecules and Vycor, and short-dashed lines denote the sum of the two. From top to bottom, the frames correspond to a water content of about 96, 74, 55, 37, and 19% of the maximum possible (corresponding to 2600, 2000,1500, 1000, and 500 water molecules in a cylindrical cavity of about 4nm diameter and 7.13 nm length). (From Ref. 24.)... [Pg.374]

More complicated and less known than the structure of pure water is the structure of aqueous solutions. In all cases, the structure of water is changed, more or less, by dissolved substances. A quantitative measure for the influence of solutes on the structure of water was given in 1933 by Bernal and Fowler 23), introducing the terminus structure temperature, Tsl . This is the temperature at which any property of pure water has the same value as the solution at 20 °C. If a solute increases Tst, the number of hydrogen bonded water molecules is decreased and therefore it is called a water structure breaker . Vice versa, a Tsl decreasing solute is called a water structure maker . Concomitantly the mobility of water molecules becomes higher or lower, respectively. [Pg.4]

Tell the number of hydrogens bonded to each carbon atom in the following substances, and give the molecular formula of each ... [Pg.31]

Once such a molecular complex with hydroquinone has been formed it may persist under conditions where it is no longer thermodynamically stable. Because the molecules of the second component are enclosed in the cavities they cannot escape without breaking a number of hydrogen bonds in the -hydroquinone lattice. This corresponds to a considerable energy of activation which may prevent the attainment of thermodynamic equilibrium. [Pg.2]

For both cases, the assumption is valid that only one helical sequence exists and that products with the same number of hydrogen bonds have the same stability. Considering the statistical weights of the possible intermediates, the whole measurable degree of conversion, t0,ai, is computed by the mass-action law and can be derived from Eq. (6)149. ... [Pg.188]

Levy (Chapter 6) has also explored the use of supercomputers to study detailed properties of biological macromolecule that are only Indirectly accessible to experiment, with particular emphasis on solvent effects and on the Interplay between computer simulations and experimental techniques such as NMR, X-ray structures, and vltratlonal spectra. The chapter by Jorgensen (Chapter 12) summarizes recent work on the kinetics of simple reactions In solutions. This kind of calculation provides examples of how simulations can address questions that are hard to address experimentally. For example Jorgensen s simulations predicted the existence of an Intermediate for the reaction of chloride Ion with methyl chloride In DMF which had not been anticipated experimentally, and they Indicate that the weaker solvation of the transition state as compared to reactants for this reaction In aqueous solution Is not due to a decrease In the number of hydrogen bonds, but rather due to a weakening of the hydrogen bonds. [Pg.8]

Qnantized adhesion was observed by Hoh et al. [53] for a SisN4 tip breaking contact with a glass snrface in water, which had been NaOH adjusted to pH 8.5. As described at the beginning of Section IILA, a more accurate description of the measurement would be quantized displacement, which can be evaluated as quantized adhesion by multiplying the observed displacement by the lever stiffness. The authors speculate that their observations conld be explained either by the breaking of discrete numbers of hydrogen bonds between the tip and surface or by the breakdown of the continuum properties of water in close proximity to a solid surface. [Pg.37]

Partitioning or cell-based methods provide an absolute measure of the chemical space covered by a collection of compounds. They are based on the definition of a low-dimensional chemistry space, for example, one based on a small number of physicochemical properties such as molecular weight, calculated logP, and number of hydrogen bond donors [45]. Each property defines an axis of the chemistry-space. The range of values for each property is divided into a set of bins, and the combinatorial product of all bins then defines the set of cells or partitions that make up the space. [Pg.201]


See other pages where Number of hydrogen bonds is mentioned: [Pg.566]    [Pg.169]    [Pg.498]    [Pg.503]    [Pg.143]    [Pg.16]    [Pg.17]    [Pg.20]    [Pg.28]    [Pg.326]    [Pg.225]    [Pg.75]    [Pg.380]    [Pg.329]    [Pg.355]    [Pg.357]    [Pg.369]    [Pg.369]    [Pg.373]    [Pg.375]    [Pg.493]    [Pg.638]    [Pg.162]    [Pg.172]    [Pg.193]    [Pg.195]    [Pg.200]    [Pg.440]    [Pg.440]    [Pg.441]    [Pg.265]    [Pg.42]    [Pg.60]    [Pg.61]    [Pg.62]    [Pg.203]    [Pg.204]    [Pg.338]    [Pg.31]   
See also in sourсe #XX -- [ Pg.144 , Pg.324 , Pg.399 ]




SEARCH



Average number of hydrogen bonds

Bond number

Hydrogen number

Number of bonds

Number of hydrogen bond donors

© 2024 chempedia.info