Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleotidase 5-NT

Serum ALP and total bilirubin (unconjugated and conjugated fractions) are traditionally used to monitor cholestatic injury. The ALP families of enzymes are zinc metalloproteases that are present in nearly all tissues. In the liver, ALP is immu-nolocalized to the microvili of the bile canaliculus [124]. Increased synthesis of ALP and its release into the circulation occurs within hours of cholestatic injury [129]. Serum assays of 5 -nucleotidase (5 -NT) or y-glutamyltransferase activity (GGT) are used to confirm the liver as the specific origin for the elevation of ALP. Increases in serum bilirubin or bile acids are usually the result of bile retention subsequent to impaired bile flow, increased production associated with accelerated erythrocyte destruction, or altered bilirubin metabolism [129]. [Pg.370]

Two other well-characterized hydrolytic enzymes are known that also possess a very similar j3aj3a(3 protein structure, together with the phosphoesterase signature motif and a dinuclear metal center the phage A protein phosphatase (APP) and the 5 -nucleotidase (5 -NT) from... [Pg.664]

Fig. 29.2 Caffeine is produced from xanthosine derived from four routes (1) inosine-5 -monophosphate (IMP) originating from de novo purine synthesis (de novo route), (2) adenosine released from the 5-adenosyhnethionine (SAM) cycle, (3) the cellular adenosine nucleotide pool (AMP route), and (4) the guanine nucleotide pool (GMP route). Enzymes AMPDA AMP deaminase, APRT adenine phosphorihosyltransferase, AK adenosine kinase, ARN adenosine nucleosidase, GRD guanine deaminase, IMPDH IMP dehydrogenase, 5 NT 5 -nucleotidase... Fig. 29.2 Caffeine is produced from xanthosine derived from four routes (1) inosine-5 -monophosphate (IMP) originating from de novo purine synthesis (de novo route), (2) adenosine released from the 5-adenosyhnethionine (SAM) cycle, (3) the cellular adenosine nucleotide pool (AMP route), and (4) the guanine nucleotide pool (GMP route). Enzymes AMPDA AMP deaminase, APRT adenine phosphorihosyltransferase, AK adenosine kinase, ARN adenosine nucleosidase, GRD guanine deaminase, IMPDH IMP dehydrogenase, 5 NT 5 -nucleotidase...
Adenosine S -monophosphate (AMP) is used as a substrate for S -nucleotidase assay. However this substrate can also be hydrolysed by nonspecific phosphatases. Nickel ions inhibit S -nucleotidase but not the nonspecific phosphatases. Serum is therefore incubated with AMP, with and without nickel ions and the amounts of inorganic phosphate liberated by the reactions are measured. The difference between the two values corresponds to the activity of 5 NT. [Pg.258]

Fig. 4 Mechanisms involved in the extracellular inactivation of nucleotides (a, b and c) and adenosine (d) and their influence on purine concentration in the P2Y and PI receptor biophases, (a) NT-PDasel hydrolyses ATP and ADP very efficiently, thus preventing their action on P2Y receptors (b) NTPDase2 metabolizes ATP preferentially, allowing an accumulation of ADP and thus favouring activation of P2Yi, 12,13 receptors (c) NTPDase3 hydrolyses both ATP and ADP slowly, giving them time to activate both P2Y2,4 and P2Y 1,12,13 receptors. Formation of adenosine depends on the activity of ecto 5 -nucleotidase (CD73). Adenosine inactivation systems also influence adenosine concentration in the PI receptor biophase (d) the nucleoside transporters take up adenosine adenosine deaminase (ADA) regulates both the concentration of adenosine in the Ai receptor biophase and the functionality of Ai receptors. Fig. 4 Mechanisms involved in the extracellular inactivation of nucleotides (a, b and c) and adenosine (d) and their influence on purine concentration in the P2Y and PI receptor biophases, (a) NT-PDasel hydrolyses ATP and ADP very efficiently, thus preventing their action on P2Y receptors (b) NTPDase2 metabolizes ATP preferentially, allowing an accumulation of ADP and thus favouring activation of P2Yi, 12,13 receptors (c) NTPDase3 hydrolyses both ATP and ADP slowly, giving them time to activate both P2Y2,4 and P2Y 1,12,13 receptors. Formation of adenosine depends on the activity of ecto 5 -nucleotidase (CD73). Adenosine inactivation systems also influence adenosine concentration in the PI receptor biophase (d) the nucleoside transporters take up adenosine adenosine deaminase (ADA) regulates both the concentration of adenosine in the Ai receptor biophase and the functionality of Ai receptors.

See other pages where Nucleotidase 5-NT is mentioned: [Pg.948]    [Pg.221]    [Pg.264]    [Pg.53]    [Pg.257]    [Pg.948]    [Pg.221]    [Pg.264]    [Pg.53]    [Pg.257]    [Pg.22]    [Pg.125]    [Pg.211]    [Pg.534]   


SEARCH



Nucleotidases

© 2024 chempedia.info