Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic reactions alkenes

Allyl acetates are more commonly used as electrophiles for the palladium-catalyzed allylic alkylation than allylic nitro compounds.20 However, the reaction of allylic nitro compounds has found wider applications. Allylic nitro compounds are readily available by nitration of alkenes. The regio- and stereoselective introduction of electrophiles and nucleophiles into alkenes is possible as outlined in Eq. 7.19. In fact, this strategy is applied to the synthesis of terpenoids.21... [Pg.186]

The synthesis of polyhalide salts, R4NX , used in electrophilic substitution reactions, are described in Chapter 2 and H-bonded complexed salts with the free acid, R4NHX2, which are used for example in acid-catalysed cleavage reactions and in electrophilic addition reactions with alkenes, are often produced in situ [33], although the fluorides are obtained by modification of method I.I.I.B. [19, 34], The in situ formation of such salts can inhibit normal nucleophilic reactions [35, 36]. Quaternary ammonium chlorometallates have been synthesized from quaternary ammonium chlorides and transition metal chlorides, such as IrClj and PtCl4, and are highly efficient catalysts for phase-transfer reactions and for metal complex promoted reactions [37]. [Pg.4]

A development of the last two decades is the use of Wacker activation for intramolecular attack of nucleophiles to alkenes in the synthesis of organic molecules [9], In most examples, the nucleophilic attack is intramolecular, as the rates of intermolecular reactions are very low. The reaction has been applied in a large variety of organic syntheses and is usually referred to as Wacker (type) activation of alkene (or alkynes). If oxygen is the nucleophile, it is called oxypalladation [10], Figure 15.4 shows an example. During these reactions the palladium catalyst is often also a good isomerisation catalyst, which leads to the formation of several isomers. [Pg.324]

The intramolecular addition of carbon nucleophiles to alkenes has received comparatively little attention relative to heterocyclization reactions. The first examples of Pd-catalyzed oxidative carbocyclization reactions were described by Backvall and coworkers [164-166]. Conjugaled dienes with appended al-lyl silane and stabilized carbanion nucleophiles undergo 1,4-carbochlorination (Eq. 36) and carboacetoxylation (Eq. 37), respectively. The former reaction employs BQ as the stoichiometric oxidant, whereas the latter uses O2. The authors do not describe efforts to use molecular oxygen in the reaction with allyl silanes however, BQ was cited as being imsuccessful in the reaction with stabihzed car-banions. Benzoquinone is known to activate Ti-allyl-Pd intermediates toward nucleophilic attack (see below. Sect. 4.4). In the absence of BQ, -hydride eUm-ination occurs to form diene 43 in competition with attack of acetate on the intermediate jr-allyl-Pd" species to form the 1,4-addition product 44. [Pg.100]

Widenhoefer has developed methods for Pd-catalyzed addition of 1,3-dicarbonyl nucleophiles to alkenes [ 171-173]. Most of these reactions employ stoichiometric copper as the oxidant however, Yang and coworkers recently reported a modified procedure that employs cocatalytic lanthanide Lewis acids to achieve direct dioxygen-coupled turnover (Eq. 39) [174], The Lewis acid is thought to activate the carbon nucleophile, P-keto amide, toward attack on the tethered alkene. [Pg.101]

Palladium-catalyzed addition of oxygen nucleophiles to alkenes dates back to the Wacker process and acetoxylation of ethylene (Sects. 1 and 2). In contrast, catalytic methods for intermolecular oxidative amination of alkenes (i.e., aza-Wacker reactions) have been identified only recently. Both O2 and BQ have been used as oxidants in these reactions. [Pg.102]

The computed values of Aee and Aen also predict that dimethoxycarbene should be a nucleophilic carbene. Experimentally, dimethoxycarbene does not add at all to electron-rich alkenes (preferring to dimerize instead), but does add readily to electron-poor methyl acrylate and acrylonitrile." Many other nucleophilic reactions of (CH30)2C and related dialkoxycarbenes have been investigated and reviewed by Warkentin." ... [Pg.283]

Chambers RD, Vaughan JFS (1995) Nucleophilic Reactions of Fluorinated Alkenes. 192 1-38 Chambron J-C, Dietrich-Buchecker Ch, Sauvage J-P (1993) From Classical Chirality to Topologically Chiral Catenands and Knots. 165 131-162. [Pg.244]

In a number of classes of systems, the catalytic and other chemical effects of metal ions on reactions of organic and inorganic molecules are generally recognized the catalysis of nucleophilic reactions such as ester hydrolysis the reactions of alkenes and alkynes in the presence of metal carbonyls (8, 9, 69) stereospecific polymerization in the presence of Ziegler catalysts (20, 55, 56) the activation of such small molecules as H2 (37), 02 (13), H202 (13), and possibly N2 (58) and aromatic substitution reactions of metal-cyclopentadienyl compounds (59, 63). [Pg.6]

Reactions of carbocations with water as a base removing a [3-proton to form an alkene or aromatic product have been less studied than nucleophilic reactions with water. Nevertheless, the correlations included in Fig. 1 (p. 43) represent a considerable range of measurements and these can be further extended to include loss of a proton a to a carbonyl group.116 Indeed, if one places these reactions in the wider context of proton transfers, it can be claimed that they constitute the largest of all groups of reactions for which correlations of rate and equilibrium constants have been studied.116,244,245... [Pg.87]


See other pages where Nucleophilic reactions alkenes is mentioned: [Pg.158]    [Pg.88]    [Pg.104]    [Pg.61]    [Pg.35]    [Pg.180]    [Pg.562]    [Pg.262]    [Pg.5]    [Pg.258]    [Pg.103]    [Pg.1]    [Pg.3]    [Pg.5]    [Pg.7]    [Pg.9]    [Pg.13]    [Pg.15]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.23]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.33]    [Pg.35]    [Pg.37]    [Pg.254]   
See also in sourсe #XX -- [ Pg.11 , Pg.21 , Pg.420 ]




SEARCH



Alkene derivatives carbon nucleophile reactions

Alkene radical cations, kinetics nucleophiles, reaction with

Fluorinated alkenes reactions with nucleophiles

Group 16 atoms, nucleophilic substitution alkene-alcohol reactions

Nucleophiles alkenes

Reactions with Alkene Nucleophiles

© 2024 chempedia.info