Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid anhydride nucleophilic acyl substitution

Acid anhydrides are not as reactive as acid chlorides, but they are still activated toward nucleophilic acyl substitution. An anhydride reacts with an alcohol to form an ester. Notice that one of the two acid units from the anhydride is expelled as the leaving group. [Pg.1002]

Among the most important reactions of carboxylic acids are those that convert the carboxyl group into an acid derivative by a nucleophilic acyl substitution. Acid chlorides, anhydrides, esters, and amides can all be prepared from carboxylic acids (Figure 21.4). [Pg.853]

The weakest base in this series, and thus the best leaving group, is halide ion acid halides are the most reactive toward nucleophilic acyl substitution. The strongest base, and hence the poorest leaving group, is amide ion amides are the least reactive toward nucleophilic acyl substitution. Acid halides and acid anhydrides are so reactive that they are not found in nature. Esters and amides, however, are universally present. [Pg.496]

Conversions of acid anhydrides to other carboxylic acid derivatives are illustrated m Table 20 2 Because a more highly stabilized carbonyl group must result m order for nucleophilic acyl substitution to be effective acid anhydrides are readily converted to carboxylic acids esters and amides but not to acyl chlorides... [Pg.842]

Nucleophilic acyl substitutions at the ester carbonyl group are summarized m Table 20 5 on page 849 Esters are less reactive than acyl chlorides and acid anhydrides Nude ophilic acyl substitution m esters especially ester hydrolysis has been extensively mves tigated from a mechanistic perspective Indeed much of what we know concerning the general topic of nucleophilic acyl substitution comes from studies carried out on esters The following sections describe those mechanistic studies... [Pg.846]

The characteristic reaction of acyl chlorides acid anhydrides esters and amides is nucleophilic acyl substitution Addition of a nucleophilic reagent Nu—H to the carbonyl group leads to a tetrahedral mtermedi ate that dissociates to give the product of substitution... [Pg.874]

Section 20 4 Acyl chlorides are converted to acid anhydrides esters and amides by nucleophilic acyl substitution... [Pg.875]

Section 20 6 Acid anhydrides are less reactive toward nucleophilic acyl substitution than acyl chlorides but are useful reagents for preparing esters and amides... [Pg.875]

Nucleophilic acyl substitution (Sections 20 4 20 6 and 20 12) Acylation of am monia and amines by an acyl chloride acid anhydride or ester is an excep tionally effective method for the for mation of carbon-nitrogen bonds... [Pg.928]

The 7 glutamyl phosphate formed m this step is a mixed anhydride of glutamic acid and phosphoric acid It is activated toward nucleophilic acyl substitution and gives glutamine when attacked by ammonia... [Pg.1163]

The first example in Table 20.2 introduces a new aspect of nucleophilic acyl substitution that applies not only to acid anhydrides but also to acyl chlorides, thioesters, esters, and amides. Nucleophilic acyl substitutions can be catalyzed by acids. [Pg.844]

Acid halides are among the most reactive of carboxylic acid derivatives and can be converted into many other kinds of compounds by nucleophilic acyl substitution mechanisms. The halogen can be replaced by -OH to yield an acid, by —OCOR to yield an anhydride, by -OR to yield an ester, or by -NH2 to yield an amide. In addition, the reduction of an acid halide yields a primary alcohol, and reaction with a Grignard reagent yields a tertiary alcohol. Although the reactions we ll be discussing in this section are illustrated only for acid chlorides, similar processes take place with other acid halides. [Pg.800]

Conversion of Acid Halides into Anhydrides Nucleophilic acyl substitution reaction of an acid chloride with a carboxylate anion gives an acid anhydride. Both symmetrical and unsymmetrical acid anhydrides can be prepared in this way. [Pg.802]

Notice in both of the previous reactions that only "half" of the anhydride molecule is used the other half acts as the leaving group during the nucleophilic acyl substitution step and produces acetate ion as a by-product. Thus, anhydrides are inefficient to use, and acid chlorides are normally preferred for introducing acyl substituents other than acetyl groups. [Pg.807]

We ve already studied the two most general reactions of amines—alkylation and acylation. As we saw earlier in this chapter, primary, secondary, and tertiary amines can be alkylated by reaction with a primary alkyl halide. Alkylations of primary and secondary amines are difficult to control and often give mixtures of products, but tertiary amines are cleanly alkylated to give quaternary ammonium salts. Primary and secondary (but not tertiary) amines can also be acylated by nucleophilic acyl substitution reaction with an acid chloride or an acid anhydride to yield an amide (Sections 21.4 and 21.5). Note that overacylation of the nitrogen does not occur because the amide product is much less nucleophilic and less reactive than the starting amine. [Pg.936]

Primary (RNH2) and secondary (R2NH) amines undergo nucleophilic acyl substitution with acid chlorides and anhydrides in pyridine or EtsN to give 2° and 3° amides (see Section 5.5.5). Primary amines (RNH2) react with... [Pg.84]

The most important reactions of carboxylic acids are the conversions to various carboxylic acid derivatives, e.g. acid chlorides, acid anhydrides and esters. Esters are prepared by the reaction of carboxylic acids and alcohols. The reaction is acid catalysed and is known as Fischer esterification (see Section 5.5.5). Acid chlorides are obtained from carboxylic acids by the treatment of thionyl chloride (SOCI2) or oxalyl chloride [(COCl)2], and acid anhydrides are produced from two carboxylic acids. A summary of the conversion of carboxylic acid is presented here. All these conversions involve nucleophilic acyl substitutions (see Section 5.5.5). [Pg.93]

Acid chlorides are the most reactive carboxylic acid derivatives, and easily converted to acid anhydrides, esters and amides via nucleophilic acyl substitutions (see Section 5.5.5). Acid chlorides are sufficiently reactive with H2O, and quite readily hydrolysed to carboxylic acid (see Section 5.6.1). [Pg.95]

SAMPLE SOLUTION (a) Nucleophilic acyl substitution by an alcohol on an acid anhydride yields an ester. [Pg.850]


See other pages where Acid anhydride nucleophilic acyl substitution is mentioned: [Pg.842]    [Pg.843]    [Pg.842]    [Pg.843]    [Pg.844]    [Pg.846]    [Pg.794]    [Pg.797]    [Pg.816]    [Pg.1148]    [Pg.216]    [Pg.51]    [Pg.125]    [Pg.849]    [Pg.851]    [Pg.853]   
See also in sourсe #XX -- [ Pg.806 ]

See also in sourсe #XX -- [ Pg.806 ]

See also in sourсe #XX -- [ Pg.823 , Pg.824 , Pg.855 ]

See also in sourсe #XX -- [ Pg.778 , Pg.779 , Pg.808 ]

See also in sourсe #XX -- [ Pg.835 ]




SEARCH



Acid anhydrides acylation

Acyl substitution

Acylation Nucleophilic acyl substitution

Acylation anhydrides

Nucleophiles Nucleophilic acyl substitution

Nucleophiles acylation

Nucleophilic acyl substitution

Nucleophilic substitution, acid

Nucleophilicity acids

© 2024 chempedia.info