Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear magnetic resonance limitation

Nuclear magnetic resonance Limited sensitivity, applicable to a wide range of analytes, costly, still under development. [Pg.76]

The section on Spectroscopy has been retained but with some revisions and expansion. The section includes ultraviolet-visible spectroscopy, fluorescence, infrared and Raman spectroscopy, and X-ray spectrometry. Detection limits are listed for the elements when using flame emission, flame atomic absorption, electrothermal atomic absorption, argon induction coupled plasma, and flame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear properties of the elements, proton chemical shifts and coupling constants, and similar material for carbon-13, boron-11, nitrogen-15, fluorine-19, silicon-19, and phosphoms-31. [Pg.1284]

Nuclear Magnetic Resonance Spectroscopy. Bmker s database, designed for use with its spectrophotometers, contains 20,000 C-nmr and H-nmr, as weU as a combined nmr-ms database (66). Sadder Laboratories markets a PC-based system that can search its coUection of 30,000 C-nmr spectra by substmcture as weU as by peak assignments and by fiiU spectmm (64). Other databases include one by Varian and a CD-ROM system containing polymer spectra produced by Tsukuba University, Japan. CSEARCH, a system developed at the University of Vieima by Robien, searches a database of almost 16,000 C-nmr. Molecular Design Limited (MDL) has adapted the Robien database to be searched in the MACCS and ISIS graphical display and search environment (63). Projects are under way to link the MDL system with the Sadder Hbrary and its unique search capabiHties. [Pg.121]

M Vasquez, ElA Scheraga. Calculation of protein conformation by the build-up procedure. Application to bovine pancreatic trypsin inhibitor using limited simulated nuclear magnetic resonance data. J Biomol Struct Dyn 5 705-755, 1988. [Pg.309]

GM Clore, MA Robien, AM Gronenborn. Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy. J Mol Biol 231 82-102, 1993. [Pg.310]

The 9ai7-quinolizine structure (82) for the labile adduct from 3,5-dimethylpyridine was clearly established by the nuclear magnetic resonance studies of Richards and Higham, and subsequent work showed the labile adduct from 3-methylpyridine was analogous. As the labile adducts from all the pyridines and benzopyridines so far examined have very similar infrared absorption spectra in the 5-7 yn. (carbonyl and aromatic) region and within quite close limits very similar ultraviolet absorption spectra, it can be concluded that all are derivatives of 9aH-quinolizine,... [Pg.145]

The small amount of available crystalline abscisin II limited this investigation to the measurement and interpretation of elemental analysis, mass spectrum, and infrared, ultraviolet, and nuclear magnetic resonance (NMR) spectra (11). [Pg.105]

In this chapter we have limited ourselves to the most common techniques in catalyst characterization. Of course, there are several other methods available, such as nuclear magnetic resonance (NMR), which is very useful in the study of zeolites, electron spin resonance (ESR) and Raman spectroscopy, which may be of interest for certain oxide catalysts. Also, all of the more generic tools from analytical chemistry, such as elemental analysis, UV-vis spectroscopy, atomic absorption, calorimetry, thermogravimetry, etc. are often used on a routine basis. [Pg.166]

Knight CTG, SD Kimade (1999) Silicon-29 nuclear magnetic resonance spectroscopy detection limits. A a/ Chem 71 265-267. [Pg.292]

Because of the grandiose scale of the apparatus involved, SANS facilities are few in number worldwide access to them is limited and expensive. We have attempted to devise an experiment which employs solid state nuclear magnetic resonance to examine some aspects of affine deformation. [Pg.280]

The techniques available to achieve molecular structure determinations are limited. They include structural analysis with diffraction techniques—such as electron, neutron, and x-ray diffraction—and various absorption and emission techniques of electromagnetic radiation—such as microwave spectroscopy and nuclear magnetic resonance (NMR). For molecules with unpaired spins a companion technique of electron spin resonance spectroscopy (ESR) is highly informative. [Pg.57]


See other pages where Nuclear magnetic resonance limitation is mentioned: [Pg.586]    [Pg.2818]    [Pg.219]    [Pg.148]    [Pg.257]    [Pg.516]    [Pg.227]    [Pg.385]    [Pg.256]    [Pg.21]    [Pg.109]    [Pg.584]    [Pg.2]    [Pg.538]    [Pg.294]    [Pg.3]    [Pg.107]    [Pg.130]    [Pg.471]    [Pg.151]    [Pg.377]    [Pg.463]    [Pg.26]    [Pg.61]    [Pg.40]    [Pg.135]    [Pg.427]    [Pg.528]    [Pg.687]    [Pg.782]    [Pg.224]    [Pg.437]    [Pg.425]    [Pg.25]    [Pg.434]    [Pg.340]    [Pg.66]   
See also in sourсe #XX -- [ Pg.200 ]

See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Nuclear limitations

Nuclear magnetic resonance detection limits

Nuclear magnetic resonance spectroscopy limitations

© 2024 chempedia.info