Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear magnetic resonance catalysts

An unusual method for the preparation of syndiotactic polybutadiene was reported by The Goodyear Tire Rubber Co. (43) a preformed cobalt-type catalyst prepared under anhydrous conditions was found to polymerize 1,3-butadiene in an emulsion-type recipe to give syndiotactic polybutadienes of various melting points (120—190°C). These polymers were characterized by infrared spectroscopy and nuclear magnetic resonance (44—46). Both the Ube Industries catalyst mentioned previously and the Goodyear catalyst were further modified to control the molecular weight and melting point of syndio-polybutadiene by the addition of various modifiers such as alcohols, nitriles, aldehydes, ketones, ethers, and cyano compounds. [Pg.531]

In this chapter we have limited ourselves to the most common techniques in catalyst characterization. Of course, there are several other methods available, such as nuclear magnetic resonance (NMR), which is very useful in the study of zeolites, electron spin resonance (ESR) and Raman spectroscopy, which may be of interest for certain oxide catalysts. Also, all of the more generic tools from analytical chemistry, such as elemental analysis, UV-vis spectroscopy, atomic absorption, calorimetry, thermogravimetry, etc. are often used on a routine basis. [Pg.166]

In general, several spectroscopic techniques have been applied to the study of NO, removal. X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) are currently used to determine the surface composition of the catalysts, with the aim to identify the cationic active sites, as well as their coordinative environment. [Pg.98]

Nuclear magnetic resonance has proved to be a valuable tool in determination of configurational sequences in poly(MMA) (14). In Figure 3 is shown the NMR of poly(MMA) synthesized with an anionic polymerization catalyst known to produce predominantly isotactic sequences. In these polymers, the NMR spectrum of the methylene units In the polymer backbone gives an unequivocal determination of tacticity. The methylene signal, occurring about 1.8... [Pg.491]

Although relaxation measurements have been widely used in nuclear magnetic resonance studies of solid catalysts and adsorbed molecules, they have not found such favor in similar ESR work. Relaxation phenomena, however, do play a very important role in any magnetic resonance experiment, whether or not this aspect of the problem is studied. In fact, the temperature at which most ESR experiments are conducted is dictated by the relaxation process. Furthermore, even qualitative data on relaxation times can be used as supporting evidence in the identification of a paramagnetic species. [Pg.279]

The title Spectroscopy in Catalysis is attractively compact but not quite precise. The book also introduces microscopy, diffraction and temperature programmed reaction methods, as these are important tools in the characterization of catalysts. As to applications, I have limited myself to supported metals, oxides, sulfides and metal single crystals. Zeolites, as well as techniques such as nuclear magnetic resonance and electron spin resonance have been left out, mainly because the author has little personal experience with these subjects. Catalysis in the year 2000 would not be what it is without surface science. Hence, techniques that are applicable to study the surfaces of single crystals or metal foils used to model catalytic surfaces, have been included. [Pg.10]

In this book we describe some the most often used techniques in catalyst characterization (see Fig. 1.5). We will highlight those methods that have been particularly useful in the study of metal, oxide and sulfide catalysts, and related model systems. Zeolites and techniques such as nuclear magnetic resonance [2,3,16] fall outside the scope of this book. A number of books on catalyst characterization are listed in the references [3, 16-22],... [Pg.21]

Most of the attempted asymmetric reductions have used sodium borohydride in conjunction with quaternary ammonium catalysts. Recently, the solution structures of ion pairs formed by quaternary ammonium ions derived from quinine with borohydride ion have been characterized by nuclear magnetic resonance methods in CDC13.1741... [Pg.139]

We describe in some detail the techniques of nuclear magnetic resonance which are used for studying alumina-supported platinum catalysts. In particular, we describe the spin-echo technique from which the Pt lineshape can be obtained. We also discuss spin echo double resonance between surface Pt and chemisorbed molecules and show how the NMR resonance of the surface Pt can be separately studied. We present examples of experimental data and discuss their interpretation. [Pg.377]

Nuclear magnetic resonance (NMR) spectroscopy is most frequently used to analyze liquid samples, but in the magic angle spinning (MAS) mode, this spectroscopy can also be employed to characterize solid catalysts, zeolites in particular [116-120], For example, the 29Si NMR signal can... [Pg.17]

A researcher in the field of heterogeneous catalysis, alongside the important studies of catalysts chemical properties (i.e., properties at a molecular level), inevitably encounters problems determining the catalyst structure at a supramolecular (textural) level. A powerful combination of physical and chemical methods (numerous variants x-ray diffraction (XRD), IR, nuclear magnetic resonance (NMR), XPS, EXAFS, ESR, Raman of Moessbauer spectroscopy, etc. and achievements of modem analytical chemistry) may be used to study the catalysts chemical and phase molecular structure. At the same time, characterizations of texture as a fairytale Cinderella fulfill the routine and very frequently senseless work, usually limited (obviously in our modem transcription) with electron microscopy, formal estimation of a surface area by a BET method, and eventually with porosimetry without any thorough insight. [Pg.258]

The strong curvature of the Eyring plots at temperatures below 35°C (see ref. 19a, Table V and Figure 6) points to hydrogen-bonded interactions between catalyst molecules, as already observed in 1969 by Uskokovic (52) in the H nuclear magnetic resonance (NMR) spectrum of dihydroquinine. [Pg.100]

Hunger, M. and Wang, W. (2006) Characterization of solid catalysts in the functioning state by Nuclear Magnetic Resonance spectroscopy. Adv. Catal.,... [Pg.171]

Characterization is the foundahon for the development and commercialization of new zeolites and zeolite-containing catalysts and adsorbents. Chapter 4 provides an overview of the most commonly employed characterization techniques and emphasizes the uhlity and limitations of each of these methods. An example is provided as to how a multi-technique characterization approach is necessary in order to determine the structure of a newly invented zeolite. Techniques covered in this chapter include X-ray powder diffraction, electron microscopy, infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and physical/ chemical methods. [Pg.626]

Crabtree and coworkers proposed a catalytic cycle for the reaction outUned in Equation 6.10. The mechanism is based on labeling and kinetic studies, and is outlined in Scheme 6.4 [25]. Adduct 36 was observed in nuclear magnetic resonance (NMR) spectra and appears to be a catalyst resting state. It should be noted that there is no change in the oxidation state of Ir, and that the key step is thought... [Pg.158]


See other pages where Nuclear magnetic resonance catalysts is mentioned: [Pg.114]    [Pg.454]    [Pg.458]    [Pg.298]    [Pg.336]    [Pg.172]    [Pg.184]    [Pg.136]    [Pg.334]    [Pg.538]    [Pg.231]    [Pg.4]    [Pg.437]    [Pg.17]    [Pg.866]    [Pg.522]    [Pg.438]    [Pg.94]    [Pg.94]    [Pg.377]    [Pg.198]    [Pg.785]    [Pg.74]    [Pg.536]    [Pg.9]    [Pg.54]    [Pg.305]    [Pg.213]    [Pg.570]    [Pg.360]    [Pg.71]   
See also in sourсe #XX -- [ Pg.354 ]




SEARCH



Catalyst nuclearity

Magnetization catalyst

Nuclear magnetic resonance spectroscopy catalysts

© 2024 chempedia.info