Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

NSE Observations on Rouse Dynamics

Rouse motion has been best documented for PDMS [38-44], a polymer with little entanglement constraints, high flexibility and low monomeric friction. For this polymer NSE experiments were carried out at T = 100 °C to study both the self- and pair-correlation function. [Pg.17]

Measurements of the self-correlation function with neutrons are normally performed on protonated materials since incoherent scattering is particularly strong there. This is a consequence of the spin-dependent scattering lengths of hydrogen. Due to spin-flip scattering, which leads to a loss of polarization, this [Pg.17]

In Fig. 4 the scattering data are plotted versus the Rouse variable [Eq. (29)]. The results for different momentum transfers follow a common straight line. For [Pg.18]

The pair-correlation function for the segmental dynamics of a chain is observed if some protonated chains are dissolved in a deuterated matrix. The scattering experiment then observes the result of the interfering partial waves originating from the different monomers of the same chain. The lower part of Fig. 4 displays results of the pair-correlation function on a PDMS melt (Mw = 1.5 x 105, Mw/Mw = 1.1) containing 12% protonated polymers of the same molecular weight. Again, the data are plotted versus the Rouse variable. [Pg.19]

Though the functional form of the dynamic structure factor is more complicated than that for the self-correlation function, the data again collapse on a common master curve which is described very well by Eq. (28). Obviously, this structure factor originally calculated by de Gennes, describes the neutron data well (the only parameter fit is W/4 = 3kBT/2/C) [41, 44], [Pg.20]


See other pages where NSE Observations on Rouse Dynamics is mentioned: [Pg.17]   


SEARCH



Rouse

Rouse dynamics

© 2024 chempedia.info