Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Normally hyperbolic invariant manifolds Hamiltonian dynamics

The point q = p = 0 (or P = Q = 0) is a fixed point of the dynamics in the reactive mode. In the full-dimensional dynamics, it corresponds to all trajectories in which only the motion in the bath modes is excited. These trajectories are characterized by the property that they remain confined to the neighborhood of the saddle point for all time. They correspond to a bound state in the continuum, and thus to the transition state in the sense of Ref. 20. Because it is described by the two independent conditions q = 0 and p = 0, the set of all initial conditions that give rise to trajectories in the transition state forms a manifold of dimension 2/V — 2 in the full 2/V-dimensional phase space. It is called the central manifold of the saddle point. The central manifold is subdivided into level sets of the Hamiltonian in Eq. (5), each of which has dimension 2N — 1. These energy shells are normally hyperbolic invariant manifolds (NHIM) of the dynamical system [88]. Following Ref. 34, we use the term NHIM to refer to these objects. In the special case of the two-dimensional system, every NHIM has dimension one. It reduces to a periodic orbit and reproduces the well-known PODS [20-22]. [Pg.198]

Recently, Wiggins et al. [15] provided a firm mathematical foundation of the robust persistence of the invariant of motion associated with the phase-space reaction coordinate in a sea of chaos. The central component in RIT that is, unstable periodic orbits, are naturally generalized in many DOFs systems in terms of so-called normally hyperbolic invariant manifold (NHIM). The fundamental theorem on NHIMs, denoted here by M, ensures [21,53] that NHIMs, if they exist, survive under arbitrary perturbation with the property that the stretching and contraction rates under the linearized dynamics transverse to jM dominate those tangent to M. Note that NHIM only requires that instability in either a forward or backward direction in time transverse to M is much stronger than those tangential directions of M, and hence the concept of NHIM can be applied to any class of continuous dynamical systems. In the case of the vicinity of saddles for Hamiltonian problems with many DOFs, the NHIM is expressed by a set of all (p, q) satisfying both q = p = Q and o(Jb) + En=i (Jb, b) = E, that is. [Pg.163]


See other pages where Normally hyperbolic invariant manifolds Hamiltonian dynamics is mentioned: [Pg.7]    [Pg.212]    [Pg.270]    [Pg.273]   
See also in sourсe #XX -- [ Pg.222 ]

See also in sourсe #XX -- [ Pg.222 ]




SEARCH



Hamiltonian dynamics

Hyperbolic

Hyperbolic manifold

Hyperbolicity

Hyperbolicity normally hyperbolic invariant manifolds

Invariant manifolds

Manifolding

© 2024 chempedia.info