Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonlinear Optics NLO

Another group of conjugated thiophene molecules for future appHcations are those being developed as nonlinear optical (NLO) devices (75). Replacement of benzene rings with thiophene has an enormous effect on the molecular nonlinearity of such molecules. These NLO molecules are able to switch, route, and modulate light. Technology using such materials should become available by the turn of the twenty-first century. [Pg.24]

The linear polarizability, a, describes the first-order response of the dipole moment with respect to external electric fields. The polarizability of a solute can be related to the dielectric constant of the solution through Debye s equation and molar refractivity through the Clausius-Mosotti equation [1], Together with the dipole moment, a dominates the intermolecular forces such as the van der Waals interactions, while its variations upon vibration determine the Raman activities. Although a corresponds to the linear response of the dipole moment, it is the first quantity of interest in nonlinear optics (NLO) and particularly for the deduction of stracture-property relationships and for the design of new... [Pg.95]

Polymers and supermolecules modified using electron push-pull chro-mophores are also of particular interest for nonlinear optics (NLO) [10-15]. NLO material has attracted much interest over the past 20 years and has been widely applied in various field (telecommunications, optical data storage, information processing, microfabrication, etc.). Chemists have developed ways to introduce NLO chromophores into many type of polymers, such as Hnear polymers, cross-linked polymers, and branched polymers, and have demonstrated their performance in NLO appHcations. [Pg.206]

Some quinones, having the ability to form intra- and/or intermolecular hydrogen bonds, exhibit high molecular hyperpolarizability and are third-order nonlinear optical (NLO) materials. Compound 39 has a %(3) of 5 x 10 11 esu at 1.9 pm, and is a third-order NLO material.23 The optoelectric properties of quinoid compounds correlate with their structures in crystals or on thin films.23... [Pg.64]

In recent years research in the field of transition-metal thiocyanates and selenocyanates received a new impetus, because of the partly interesting physical properties of such crystalline species. A review on Cd and Hg thiocyanate systems collects and sorts results of this endeavor.371 The nonlinear optical (NLO) properties of Cd thiocyanate and selenocyanate systems and criteria for the design of NLO crystals (crystal engineering), especially, have been discussed afterwards.372 Further contributions to the field have also been described.37, 374 The structure of mercury chlorothiocyanate has been re-determined.375... [Pg.1284]

A series of nonlinear optical (NLO) donor-aceptor chromophores containing a fused dithienothiophene (DTT) as electron relay have been synthesized and investigated. The compounds Dj-OTT-Aj 75, D -DTT-A2 76, and D -DTT-A3 77 have shown high thermal stability, which is significant for their use as the active components in optoelectronic devices <2004CEJ3805, 1999JMC2227>. [Pg.705]

The proportionality constants a and (> are the linear polarizability and the second-order polarizability (or first hyperpolarizability), and x(1) and x<2) are the first- and second-order susceptibility. The quadratic terms (> and x<2) are related by x(2) = (V/(P) and are responsible for second-order nonlinear optical (NLO) effects such as frequency doubling (or second-harmonic generation), frequency mixing, and the electro-optic effect (or Pockels effect). These effects are schematically illustrated in Figure 9.3. In the remainder of this chapter, we will primarily focus on the process of second-harmonic generation (SHG). [Pg.524]

Second-order nonlinear optics (NLO) has several applications in the field of optoelectronics.11 Several of these nonlinear processes are straightforward to experimentally demonstrate but their application in devices has been hampered by the lack of appropriate materials. Necessary requirements for second-order nonlinear optical materials include the absence of centrosymmetry, stability (thermal and mechanical), low optical loss, and large and fast nonlinearities.8... [Pg.563]

The ethynyl-linked complexes 105 were prepared and explored as potential building blocks for nonlinear optical (NLO) materials.129 Spectroscopic and cyclic voltammetry data indicate a small but real interaction between the ferrocenyl donor group and the borabenzene unit, increasing in the order RuHyper-Rayleigh scattering revealed small values for the first hyperpolarizability / , which increases in the same order. [Pg.36]

If the mesogens are pendant to the polymer backbone, materials are obtained with special magnetic, electrical and optical properties. They provide for nonlinear optics (NLOs) applications in numerous optoelectronic elements. [Pg.31]


See other pages where Nonlinear Optics NLO is mentioned: [Pg.399]    [Pg.321]    [Pg.134]    [Pg.539]    [Pg.335]    [Pg.337]    [Pg.35]    [Pg.345]    [Pg.337]    [Pg.126]    [Pg.71]    [Pg.452]    [Pg.26]    [Pg.621]    [Pg.229]    [Pg.387]    [Pg.8]    [Pg.184]    [Pg.574]    [Pg.101]    [Pg.101]    [Pg.373]    [Pg.591]    [Pg.621]   


SEARCH



Nonlinear optical materials (NLOs

THIRD ORDER NONLINEAR OPTICAL (NLO) PROPERTIES

© 2024 chempedia.info