Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

No-interval coherently phased product

No-interval coherently phased product-development (NICPPD) model... [Pg.22]

NICPPD model May-Plumlee, T., Little, T.J. 1998. No-interval coherently phased product-development model for apparel. International Journal of Clothing Science and Technology... [Pg.55]

We first discuss the overall chemical process predicted, followed by a discussion of reaction mechanisms. Under the simulation conditions, the HMX was in a highly reactive dense fluid phase. There are important differences between the dense fluid (supercritical) phase and the solid phase, which is stable at standard conditions. Namely, the dense fluid phase cannot accommodate long-lived voids, bubbles, or other static defects, since it has no surface tension. Instead numerous fluctuations in the local environment occur within a timescale of 10s of femtoseconds. The fast reactivity of the dense fluid phase and the short spatial coherence length make it well suited for molecular dynamics study with a finite system for a limited period of time. Under the simulation conditions chemical reactions occurred within 50 fs. Stable molecular species were formed in less than a picosecond. We report the results of the simulation for up to 55 picoseconds. Figs. 11 (a-d) display the product formation of H2O, N2, CO2 and CO, respectively. The concentration, C(t), is represented by the actual number of product molecules formed at the corresponding time (. Each point on the graphs (open circles) represents a 250 fs averaged interval. The number of the molecules in the simulation was sufficient to capture clear trends in the chemical composition of the species studied. These concentrations were in turn fit to an expression of the form C(/) = C(l- e ), where C is the equilibrium concentration and b is the effective rate constant. From this fit to the data, we estimate effective reaction rates for the formation of H2O, N2, CO2, and CO to be 0.48, 0.08,0.05, and 0.11 ps, respectively. [Pg.91]


See other pages where No-interval coherently phased product is mentioned: [Pg.22]    [Pg.22]   


SEARCH



Phase coherence

Production phase

Productive phase

© 2024 chempedia.info