Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrous formation

Clemens, J., J. Burkhardt, and H. Goldbach, Abiogenic Nitrous Formation on Aerosols, Atmos. Environ., 31, 2961-2964 (1997). [Pg.831]

Formation of nitrosaminey RgN NO. (a) From monomethylaniline. Dissolve I ml. of monomethylaniline in about 3 ml. of dil. HCl and add sodium nitrite solution gradually with shaking until the yellow oil separates out at the bottom of the solution. Transfer completely to a smdl separating-funnel, add about 20 ml. of ether and sh e. Run off the lower layer and wash the ethereal extract first with water, then with dil. NaOH solution, and finally with w ter to free it completely from nitrous acid. Evaporate the ether in a basin over a previously warmed water-bath, in a fume cupboard with no flames near. Apply Liebermann s reaction to the residual oil (p. 340). [Pg.376]

Tertiary aliphatic - aromatic amines, unlike those of the aliphatic series, react with nitrous acid with the formation of G-nitroso compounds the nitroso group enters almost exclusively in the para position if available, otherwise in the ortho position. Thus dimethylaniline yields />-nitrosodiniethylaniline ... [Pg.562]

Primary aromatic amines differ from primary aliphatic amines in their reaction with nitrous acid. Whereas the latter yield the corresponding alcohols (RNHj — ROH) without formation of intermediate products see Section 111,123, test (i), primary aromatic amines 3neld diazonium salts. Thus aniline gives phcnyldiazonium chloride (sometimes termed benzene-diazonium chloride) CjHbNj- +C1 the exact mode of formation is not known, but a possible route is through the phenjdnitrosoammonium ion tlius ... [Pg.590]

In experiments on the nitration of benzene in acetic acid, to which urea was added to remove nitrous acid (which anticatalyses nitration 4.3.1), the rate was found to be further depressed. The effect was ascribed to nitrate ions arising from the formation of urea nitrate. In the same way, urea depressed the rate of the zeroth-order nitration of mesitylene in sulpholan. ... [Pg.41]

Solutions of dinitrogen tetroxide (the mixed anhydride of nitric and nitrous acids) in sulphuric acid are nitrating agents ( 4.3.2), and there is no doubt that the effective reagent is the nitronium ion. Its formation has been demonstrated by Raman spectroscopy and by cryoscopy ... [Pg.50]

In aqueous solutions of sulphuric (< 50%) and perchloric acid (< 45 %) nitrous acid is present predominantly in the molecular form, although some dehydration to dinitrogen trioxide does occur.In solutions contairdng more than 60 % and 65 % of perchloric and sulphuric acid respectively, the stoichiometric concentration of nitrous acid is present entirely as the nitrosonium ion (see the discussion of dinitrogen trioxide 4.1). Evidence for the formation of this ion comes from the occurrence of an absorption band in the Raman spectrum almost identical with the relevant absorption observed in crystalline nitrosonium perchlorate. Under conditions in which molecular nitrous... [Pg.54]

The more powerful anticatalysis of nitration which is found with high concentrations of nitrous acid, and with all concentrations when water is present, is attributed to the formation of dinitrogen trioxide. Heterolysis of dinitrogen trioxide could give nitrosonium and nitrite ions 2N2O4 + HjO N2O3 + 2HNO3. [Pg.56]

In contrast to its effect upon the general mechanism of nitration by the nitronium ion, nitrous acid catalyses the nitration of phenol, aniline, and related compounds. Some of these compounds are oxidised under the conditions of reaction and the consequent formation of more nitrous acids leads to autocatalysis. [Pg.57]

Figure 22 5 shows what happens when a typical primary alkylamine reacts with nitrous acid Because nitrogen free products result from the formation and decomposition of diazonium ions these reactions are often referred to as deamination reactions Alkyl... [Pg.944]

A photochemical partial synthesis of aldosterone (19) made the hormone available on an industrial scale for the first time (114). Corticosterone acetate (51 acetate) is treated with nitrosyl chloride in pyridine at 20°C to yield the 11-nitrite (115). Irradiation of (115) leads to rearrangement with formation of the C g-oxime (116). Removal of the oxime residue with nitrous acid furnishes aldosterone (19) in excellent yield. [Pg.107]

In a polluted or urban atmosphere, O formation by the CH oxidation mechanism is overshadowed by the oxidation of other VOCs. Seed OH can be produced from reactions 4 and 5, but the photodisassociation of carbonyls and nitrous acid [7782-77-6] HNO2, (formed from the reaction of OH + NO and other reactions) are also important sources of OH ia polluted environments. An imperfect, but useful, measure of the rate of O formation by VOC oxidation is the rate of the initial OH-VOC reaction, shown ia Table 4 relative to the OH-CH rate for some commonly occurring VOCs. Also given are the median VOC concentrations. Shown for comparison are the relative reaction rates for two VOC species that are emitted by vegetation isoprene and a-piuene. In general, internally bonded olefins are the most reactive, followed ia decreasiag order by terminally bonded olefins, multi alkyl aromatics, monoalkyl aromatics, C and higher paraffins, C2—C paraffins, benzene, acetylene, and ethane. [Pg.370]

Nitrous acid or nitrite salts may be used to catalyze the nitration of easily nitratable aromatic hydrocarbons, eg, phenol or phenoHc ethers. It has been suggested that a nitrosonium ion (NO + ) attacks the aromatic, resulting initially in the formation of a nitro so aromatic compound (13). Oxidation of the nitro so aromatic then occurs ... [Pg.33]

At room temperature, Htde reaction occurs between carbon dioxide and sodium, but burning sodium reacts vigorously. Under controUed conditions, sodium formate or oxalate may be obtained (8,16). On impact, sodium is reported to react explosively with soHd carbon dioxide. In addition to the carbide-forrning reaction, carbon monoxide reacts with sodium at 250—340°C to yield sodium carbonyl, (NaCO) (39,40). Above 1100°C, the temperature of the DeviHe process, carbon monoxide and sodium do not react. Sodium reacts with nitrous oxide to form sodium oxide and bums in nitric oxide to form a mixture of nitrite and hyponitrite. At low temperature, Hquid nitrogen pentoxide reacts with sodium to produce nitrogen dioxide and sodium nitrate. [Pg.163]

Special reactions of hydrazides and azides are illustrated by the conversion of the hydrazide (205) into the azide (206) by nitrous acid (60JOC1950) and thence into the urethane (207) by ethanol (64FES(19)105Q) the conversion of the same azide (206) into the N-alkylamide (208) by ethylamine the formation of the hydrazone (209) from acetaldehyde and the hydrazide (205) and the IV-acylation of the hydrazide (205) to give, for example, the formylhydrazide (210) (65FES(20)259). It is evident that there is an isocyanate intermediate between (206) and (207) such compounds have been isolated sometimes, e.g. (211). Several of the above reactions are involved in some Curtius degradations. [Pg.82]

It was also found that bromonitrophenylmethane (375) reacted with sodium aryl-methanenitronate (374) in DMSO to give the isoxazoline iV-oxide (369) in 60% yield. Both reactions probably involved the formation of a vicinal dinitroethane derivative (376), which lost nitrous acid to give cfs-a-nitrostilbene (368). As mentioned, the reaction of (368) with (374) gave the isoxazoline iV-oxide (369). [Pg.77]

In densely populated areas, traffic is responsible for massive exhausts of nitrous oxides, soot, polyaromatic hydrocarbons, and carbon monoxide. Traffic emissions also markedly contribute to the formation of ozone in the lower parts of the atmosphere. In large cities, fine particle exposure causes excess mortality which varies between one and five percent in the general population. Contamination of the ground water reservoirs with organic solvents has caused concern in many countries due to the persistent nature of the pollution. A total exposure assessment that takes into consideration all exposures via all routes is a relatively new concept, the significance of which is rapidly increasing. [Pg.256]

The most convenient route to S-nitrosothiol formation is the nitrosation of thiols by nitrous acid (Eq. 9.13). [Pg.171]

The mechanism is presumed to involve a pathway related to those proposed for other base-catalyzed reactions of isocyanoacetates with Michael acceptors. Thus base-induced formation of enolate 9 is followed by Michael addition to the nitroalkene and cyclization of nitronate 10 to furnish 11 after protonation. Loss of nitrous acid and aromatization affords pyrrole ester 12. [Pg.71]

In 1896, Graebe and Ullman reported the formation of carbazole (5) by reacting 2-aminodiphenylamine (3) with nitrous acid, followed by the thermolysis of the benzotriazole 4 which resulted. ... [Pg.132]

The rearrangement has been extended to other 4-substituted benzofuroxans of type 61, giving 62 i30-i32. although in no ease to date has the benzofuroxan been isolated, they are presumed intermediates in the formation of 63 and 64 from 5-dimethylaminobenzo-furoxan with 2,4-dinitrobenzenediazonium chloride and nitrous acid, respectively, and of 66 from 6, 68 from 67,and 70 from 69.132... [Pg.30]

The nitrosation of primary aromatic amines 1 with nitrous acid 2 and a subsequent dehydration step lead to the formation of diazonium ions 3. The unstable nitrous acid can for example be prepared by reaction of sodium nitrite with aqueous hydrochloric acid. [Pg.87]

The reaction of nitrous acid with the amino group of the /3-amino alcohol—e.g. 1-aminomethyl-cyclopentanol 1—leads to formation of the nitrosamine 4, from which, through protonation and subsequent loss of water, a diazonium ion species 5 is formed " —similar to a diazotization reaction ... [Pg.277]

The original Demjanov reaction is the conversion of an aminomethyl-cycloalkane into a cycloalkanol consisting of a carbocyclic ring that is expanded by one carbon center e.g. the reaction of aminomethylcyclohexane 8 with nitrous acid leads to formation of cycloheptanol 9 ... [Pg.278]

Increase in flame temperature often leads to the formation of free gaseous atoms, and for example aluminium oxide is more readily dissociated in an acetylene-nitrous oxide flame than it is in an acetylene-air flame. A calcium-aluminium interference arising from the formation of calcium aluminate can also be overcome by working at the higher temperature of an acetylene-nitrous oxide flame. [Pg.793]


See other pages where Nitrous formation is mentioned: [Pg.278]    [Pg.648]    [Pg.198]    [Pg.352]    [Pg.42]    [Pg.43]    [Pg.115]    [Pg.95]    [Pg.254]    [Pg.134]    [Pg.393]    [Pg.431]    [Pg.223]    [Pg.234]    [Pg.131]    [Pg.141]    [Pg.441]    [Pg.442]    [Pg.653]    [Pg.670]    [Pg.255]    [Pg.267]    [Pg.269]    [Pg.162]    [Pg.108]    [Pg.353]   
See also in sourсe #XX -- [ Pg.64 ]




SEARCH



Formation of nitrous oxides

Nitrous acid formation

Nitrous formation from alkyl nitrite

Nitrous heterogeneous formation

Nitrous oxide formation

Nitrous oxide formation mechanisms

© 2024 chempedia.info