Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitromethane solvent, polar

The solvent triangle classification method of Snyder Is the most cosDBon approach to solvent characterization used by chromatographers (510,517). The solvent polarity index, P, and solvent selectivity factors, X), which characterize the relative importemce of orientation and proton donor/acceptor interactions to the total polarity, were based on Rohrscbneider s compilation of experimental gas-liquid distribution constants for a number of test solutes in 75 common, volatile solvents. Snyder chose the solutes nitromethane, ethanol and dloxane as probes for a solvent s capacity for orientation, proton acceptor and proton donor capacity, respectively. The influence of solute molecular size, solute/solvent dispersion interactions, and solute/solvent induction interactions as a result of solvent polarizability were subtracted from the experimental distribution constants first multiplying the experimental distribution constant by the solvent molar volume and thm referencing this quantity to the value calculated for a hypothetical n-alkane with a molar volume identical to the test solute. Each value was then corrected empirically to give a value of zero for the polar distribution constant of the test solutes for saturated hydrocarbon solvents. These residual, values were supposed to arise from inductive and... [Pg.749]

The choice of solvent has had little, if any, influence on the majority of Diels-Alder reactions.210,211 Although the addition of a Lewis acid might be expected to show more solvent dependence, generally there appears to be little effect on asymmetric induction.118129 However, a dramatic effect of solvent polarity has been observed for chiral metallocene triflate complexes.212 The use of polar solvents, such as nitromethane and nitropropane, leads to a significant improvement in the catalytic properties of a copper Lewis acid complex in the hetero Diels-Alder reaction of glyoxylate esters with dienes.213... [Pg.511]

Kinetic studies of the 1,3 cycloadditions of tetracyanoethylene (TCNE) to tricarbonyl (Tj -cyclohepta-l,3,5-triene) iron 45 (R = H) and related complexes to give adducts of type 46 have confirmed their concerted nature. The small rate increases on changing from dichloromethane to the more polar nitromethane solvent ruled out an ionic intermediate, and a free radical mechanism had been previously excluded. Comparison with free cyclohepta-l,3,5-triene showed that coordination toFe(CO)3 increased... [Pg.318]

Aluminum chloride dissolves readily in chlorinated solvents such as chloroform, methylene chloride, and carbon tetrachloride. In polar aprotic solvents, such as acetonitrile, ethyl ether, anisole, nitromethane, and nitrobenzene, it dissolves forming a complex with the solvent. The catalytic activity of aluminum chloride is moderated by these complexes. Anhydrous aluminum chloride reacts vigorously with most protic solvents, such as water and alcohols. The ability to catalyze alkylation reactions is lost by complexing aluminum chloride with these protic solvents. However, small amounts of these "procatalysts" can promote the formation of catalyticaHy active aluminum chloride complexes. [Pg.147]

Obviously, this shift implies the self-association of DMSO. Further frequency shifts to even lower wave numbers (1050-1000 cm " ) are observed in both aprotic polar and protic solvents. In aprotic solvents such as acetonitrile and nitromethane, the association probably takes place between the S—O bond of DMSO and the —C=N or the —NOz group in the molecules by dipole-dipole interaction as shown in Scheme 331,32. Moreover, the stretching frequency for the S—O bond shifts to 1051 cm 1 in CHC13 and to 1010-1000 cm -1 in the presence of phenol in benzene or in aqueous solution33. These large frequency shifts are explained by the formation of hydrogen bonds between the oxygen atom in the S—O bond and the proton in the solvents. Thus, it has been... [Pg.545]

This and other work indicates that HC1 is largely undissociated in nitromethane for [HC1]>- 0.015 M and that there is little association either. There is evidence that a corresponding addition occurs to olefins in theimally degraded PVC. Results carried out in a variety of solvents (26) are consistent with elimination of HC1 occurring by a/3 -elimination of the Ex type favored by polar solvents. The same authors showed that at least in nitrobenzene containing dissolved HC1, the reverse reaction, i.e. addition of HC1, takes place. The fact that this may be interpreted as a retardation of the degradation process may have contributed to the confusion which has arisen and emphasizes the care which must be taken to disentangle the possible catalytic effect of HC1 when concurrent addition of HC1 to the polyenes is possible. [Pg.223]

In 1964, Kochetkov, Khorlin and Bochkov reported that the reaction of 1,2-alky-lorthoacetates with alcohols in the presence of catalytic amounts of HgBr2 and pTsOH furnished acetylated 1,2-trans glycosides or isomeric orthoesters depending on the reaction conditions [4]. Polar solvents (nitromethane, acetonitrile) and large amounts of catalyst promoted glycosylation (a, Scheme 5.5), whereas solvents of low polarity (dichloroethane) and the use of small amounts of catalyst favored transorthoesterification (b, Scheme 5.5) [16]. [Pg.328]

Table 1. Grafting of 3-aminopropyl groups on mesoporous silica obtained in polar-protic, polar-aprotic and non-polar solvents, surface area and catalytic efficiency for Nitroaldol condensation of 4-hydroxybenzaldehyde and nitromethane [22]. [Pg.92]

Dinitrogen pentoxide is readily soluble in absolute nitric acid and chlorinated solvents. The polarity of the solvent has a significant effect on the rate of decomposition in solution. The rate is fastest in nonpolar solvents like chloroform and slower in polar solvents like nitromethane. ° The decomposition rate for solutions of dinitrogen pentoxide in nitric acid is very slow and these solutions are moderately stable at subambient temperatures. ... [Pg.351]

In cm empirical approach (Helferich modification) it has been demonstrated on many occasions that mercuric salts (cyanide or bromide usually) in polar solvents such as nitromethane or acetonitrile favour the formation of a-glucosides, conceivably because under these conditions the mechanism of the halide displacement is rmimolecular and the carbonium ion can be approached from either side o). [Pg.40]

DNs range from zero (solvents like hexane, tetrachloromethane), through modest donors (acetonitrile 14.1, acetone 17), to good donors like water (18), to superb donors like DMSO (29.8) and, best of all, HMPA (38.8) (see table 3.7). The DN enables us to rationalize why a solvent such as nitromethane, (6r= 35.8) is considered to be fairly nonpolar, although it has a higher dielectric constant than diethyl ether (Sr = 4.2) and tetrahydrofuran (Sr = 7.6) which are often thought to be more polar solvents than their dielectric constants would indicate. The DN of nitromethane is only 2.7, compared with that of 19.2 for diethyl ether and 20 for tetrahydrofuran. These ether solvents are much better electron-pair donors than nitromethane. [Pg.58]


See other pages where Nitromethane solvent, polar is mentioned: [Pg.54]    [Pg.223]    [Pg.8]    [Pg.54]    [Pg.34]    [Pg.312]    [Pg.174]    [Pg.8]    [Pg.16]    [Pg.21]    [Pg.181]    [Pg.750]    [Pg.272]    [Pg.750]    [Pg.732]    [Pg.184]    [Pg.220]    [Pg.572]    [Pg.147]    [Pg.38]    [Pg.88]    [Pg.116]    [Pg.52]    [Pg.110]    [Pg.533]    [Pg.669]    [Pg.533]    [Pg.669]    [Pg.80]    [Pg.146]    [Pg.211]    [Pg.102]    [Pg.189]    [Pg.40]    [Pg.670]    [Pg.224]    [Pg.337]    [Pg.120]    [Pg.262]   
See also in sourсe #XX -- [ Pg.21 , Pg.326 ]




SEARCH



Nitromethan

Nitromethane

Nitromethanes

Polar solvents

Polarity, solvent

Polarity/polarization solvent

Polarization solvent

Solvent polar solvents

Solvents nitromethane

© 2024 chempedia.info