Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrogen compounds oxidized

Oxides of sulphur and other sulphur compounds Oxides of nitrogen and other nitrogen compounds Oxides of carbon... [Pg.307]

TABLE 19.2 Some Common Nitrogen Compounds Oxidation... [Pg.899]

It has been tentatively suggested that one mechanism underlies the Willgerodt reaction and the Kindler modification of it. A labile intermediate is first formed which has a carbon—carbon bond in the side chain. The scheme is indicated below it postulates a series of steps involving the addition of ammonia or amine (R = H or alkyl), elimination of water, re addition and eUmination of ammonia or amine until the unsaturation appears at the end of the chain then an irreversible oxidation between sulphur and the nitrogen compound may occur to produce a thioamide. [Pg.924]

The key initiation step in cationic polymerization of alkenes is the formation of a carbocationic intermediate, which can then interact with excess monomer to start propagation. We studied in some detail the initiation of cationic polymerization under superacidic, stable ion conditions. Carbocations also play a key role, as I found not only in the acid-catalyzed polymerization of alkenes but also in the polycondensation of arenes as well as in the ring opening polymerization of cyclic ethers, sulfides, and nitrogen compounds. Superacidic oxidative condensation of alkanes can even be achieved, including that of methane, as can the co-condensation of alkanes and alkenes. [Pg.102]

Nitrogen Compound Autoxidation. CycHc processes based on the oxidation of hydrazobenzene and dihydrophenazine to give hydrogen peroxide and the corresponding azobenzene—phenazine were developed in the United States and Germany during World War II. However, these processes could not compete economically with the anthrahydroquinone autoxidation process. [Pg.477]

Obsolete uses of urea peroxohydrate, as a convenient source of aqueous hydrogen peroxide, include the chemical deburring of metals, as a topical disinfectant and mouth wash, and as a hairdresser s bleach. In the 1990s the compound has been studied as a laboratory oxidant in organic chemistry (99,100). It effects epoxidation, the Baeyer-Villiger reaction, oxidation of aromatic amines to nitro compounds, and the conversion of sodium and nitrogen compounds to S—O and N—O compounds. [Pg.97]

Industrial. Nitric acid is itself the starting material for ammonium nitrate, nitroglycerin [55-63-0] trinitrotoluene [118-96-7]., nitroceUulose [9004-70-0] and other nitrogen compounds used in the manufacture of explosives (see Explosives and propellants). Nitric acid is made by oxidation of ammonia to nitrogen dioxide [10102-44-0] which is subsequently absorbed by water. [Pg.358]

The reactive species that iaitiate free-radical oxidatioa are preseat ia trace amouats. Exteasive studies (11) of the autoxidatioa mechanism have clearly estabUshed that the most reactive materials are thiols and disulfides, heterocycHc nitrogen compounds, diolefins, furans, and certain aromatic-olefin compounds. Because free-radical formation is accelerated by metal ions of copper, cobalt, and even iron (12), the presence of metals further compHcates the control of oxidation. It is difficult to avoid some metals, particularly iron, ia fuel systems. [Pg.414]

Hypochlorous acid reacts very rapidly and quantitatively with a slight excess of free ammonia forming monochloramine, NH2CI, which reacts at a slower rate with additional HOCl forming dichloramine, NHCI2. Trichloramine is formed when three moles of HOCl are added per mole of ammonia between pH 3—4 (100). Hypochlorous acid in the form of chlorine or hypochlorite is used in water treatments to oxidize ammonia by the process of break-point chlorination, which is based on formation of unstable dichloramine. The instabiHty of NHCI2 is caused by presence of HOCl and NCl (101,102). The reaction is most rapid at a pH of about 7.5 (103). Other nitrogen compounds such as urea, creatinine, and amino acids are also oxidized by hypochlorous acid, but at slower rates. Unstable iV-chloro compounds are intermediates in deammination of amino acids (104,105). [Pg.467]

Complex nitrogen compounds are formed from the reaction of aLkylamines with ethylene oxide (61). Thus diethylamine and ethylene oxide react to yield diethylaminoethanol. The diaLkylarninoethanols can react with ethylene oxide to give amino poly(ethylene glycols) ... [Pg.453]


See other pages where Nitrogen compounds oxidized is mentioned: [Pg.179]    [Pg.1487]    [Pg.7205]    [Pg.406]    [Pg.880]    [Pg.179]    [Pg.1487]    [Pg.7205]    [Pg.406]    [Pg.880]    [Pg.278]    [Pg.18]    [Pg.475]    [Pg.423]    [Pg.11]    [Pg.378]    [Pg.53]    [Pg.115]    [Pg.332]    [Pg.199]    [Pg.221]    [Pg.228]    [Pg.372]    [Pg.218]    [Pg.301]    [Pg.150]    [Pg.466]    [Pg.215]    [Pg.257]    [Pg.514]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



Nitrogen compounds oxides

© 2024 chempedia.info