Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitric oxide, reaction mechanisms with nucleophilic reactions

Goheen and Bennett9 showed that regular nitric acid could be used, in about two molar excess, for the oxidation of dimethyl sulphoxide to dimethyl sulphone in 86% yield. The reaction temperature was 120-150°C with a reaction time of about 4 hours. The mechanism for this reaction was postulated to involve initially a protonated sulphoxide species (which has been shown to be present in other strongly acidic systems101 ) followed by nucleophilic attack by nitrate, and the loss of nitrogen dioxide as shown in equations (4) and (5). [Pg.971]

Despite intense study of the chemical reactivity of the inorganic NO donor SNP with a number of electrophiles and nucleophiles (in particular thiols), the mechanism of NO release from this drug also remains incompletely understood. In biological systems, both enzymatic and non-enzymatic pathways appear to be involved [28]. Nitric oxide release is thought to be preceded by a one-electron reduction step followed by release of cyanide, and an inner-sphere charge transfer reaction between the ni-trosonium ion (NO+) and the ferrous iron (Fe2+). Upon addition of SNP to tissues, formation of iron nitrosyl complexes, which are in equilibrium with S-nitrosothiols, has been observed. A membrane-bound enzyme may be involved in the generation of NO from SNP in vascular tissue [35], but the exact nature of this reducing activity is unknown. [Pg.293]

A less common reactive species is the Fe peroxo anion expected from two-electron reduction of O2 at a hemoprotein iron atom (Fig. 14, structure A). Protonation of this intermediate would yield the Fe —OOH precursor (Fig. 14, structure B) of the ferryl species. However, it is now clear that the Fe peroxo anion can directly react as a nucleophile with highly electrophilic substrates such as aldehydes. Addition of the peroxo anion to the aldehyde, followed by homolytic scission of the dioxygen bond, is now accepted as the mechanism for the carbon-carbon bond cleavage reactions catalyzed by several cytochrome P450 enzymes, including aromatase, lanosterol 14-demethylase, and sterol 17-lyase (133). A similar nucleophilic addition of the Fe peroxo anion to a carbon-nitrogen double bond has been invoked in the mechanism of the nitric oxide synthases (133). [Pg.397]

At low acid concentrations, nitric oxide tends to form. This evidently may attack nitrosophenol to form diazonium compounds directly. The diazonium salts, in turn, may couple with unreacted phenol to give colored products. Nitrous acid may also produce nitrophenols from phenols. The mechanism of this reaction may involve oxidation of initially formed nitrosophenols, homolytic attack by nitrogen dioxide, or nucleophilic attack by nitrite ions [1]. [Pg.453]


See other pages where Nitric oxide, reaction mechanisms with nucleophilic reactions is mentioned: [Pg.230]    [Pg.165]    [Pg.296]    [Pg.831]    [Pg.402]    [Pg.251]    [Pg.290]    [Pg.2670]    [Pg.23]    [Pg.24]    [Pg.224]    [Pg.235]    [Pg.220]    [Pg.103]    [Pg.156]   
See also in sourсe #XX -- [ Pg.222 , Pg.223 , Pg.224 ]




SEARCH



Mechanism nitric oxide

Mechanisms nucleophiles

Mechanisms nucleophilic

Nitric oxide reaction

Nitric oxide reaction with

Nitric oxide, reaction mechanisms with

Nitric reaction

Nucleophile mechanism

Nucleophilic oxidation

Oxidation nucleophiles

Oxidation reaction mechanisms

Reaction with nucleophiles

© 2024 chempedia.info