Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nicotinamide adenine dinucleotide phosphate niacin metabolism

Nicotinate and nicotinamide, together referred to as niacin, are required for biosynthesis of the coenzymes nicotinamide adenine dinucleotide (NAD"") and nicotinamide adenine dinucleotide phosphate (NADP" ). These both serve in energy and nutrient metabolism as carriers of hydride ions (see pp. 32, 104). The animal organism is able to convert tryptophan into nicotinate, but only with a poor yield. Vitamin deficiency therefore only occurs when nicotinate, nicotinamide, and tryptophan are all simultaneously are lacking in the diet. It manifests in the form of skin damage (pellagra), digestive disturbances, and depression. [Pg.366]

Niacin is also known as vitamin PP or vitamin Bj. The term niacin describes two related compounds, nicotinic acid and nicotinamide (Figure 19.18), both with biological activity. Niacin is formed from the metabolism of tryptophan, and therefore it is not strictly a vitamin. It is a precursor of two cofactors nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), which are essential for the functioning of a wide range of enzymes involved in redox reactions. [Pg.626]

Niacin is a generic term which refers to two related chemical compounds, nicotinic acid (6.22) and its amide, nicotinamide (6.23) both are derivatives of pyridine. Nicotinic acid is synthesized chemically and can be easily converted to the amide in which form it is found in the body. Niacin is obtained from food or can be synthesized from tryptophan (60 mg of dietary tryptophan has the same metabolic effect as 1 mg niacin). Niacin forms part of two important co-enzymes, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), which are co-factors for many enzymes that participate in various metabolic pathways and function in electron transport. [Pg.198]

Niacin is unusual among the vitamins in that it was discovered as a chemical compound, nicotinic acid produced by the oxidation of nicotine, in 1867 -long before there was any suspicion that it might have a role in nutrition. Its metabolic function as part of what was then called coenzyme II [nicotinamide adenine dinucleotide phosphate (NADP)] was discovered in 1935, again before its nutritional significance was known. [Pg.200]

Co-enzyme I (nicotinamide-adenine dinucleotide NAD) and Co-enzyme II (nicotinamide-adenine dinucleotide phosphate NADP) are required by all living cells. They enable both the conversion of carbohydrates into energy as well as the metabolism of proteins and fats. Both nicotinamide and nicotinic acid are building blocks for these co-enzymes. The common name for the vitamin is niacin and, strictly speaking, refers only to nicotinic acid. [Pg.542]

Nicotinamide adenine dinucleotide (NAD) is the coenzyme form of the vitamin niacin. Most biochemical reactions require protein catalysts (enzymes). Some enzymes, lysozyme or trypsin, for example, catalyze reactions by themselves, but many require helper substances such as coenzymes, metal ions, and ribonucleic acid (RNA). Niacin is a component of two coenzymes NAD, and nicotinamide adenine dinucleotide phosphate (N/kDP). NAD (the oxidized form of the NAD coenzyme) is important in catabolism and in the production of metabolic energy. NADP (the oxidized form of NADP) is important in the biosynthesis of fats and sugars. [Pg.845]

Niacin is a water-soluble vitamin. The RDA of niacin for the adult man is 19 mg. Niacin is converted in the bi>dy to the cofactor nicotinamide adenine dinucleotide (NAD). NAD also exists in a phosphorylated form, NADP The phosphate group occurs on the 2-hydrr>xyl group of the AMP half of the coenzyme, NAD and NADP are used in the catalysis of oxidation and reduction reactions. These reactions are called redox reactions. NAD cycles between the oxidized form, NAD, and the reduced form, NADH + H. The coenzyme functions to accept and donate electrons. NADP behaves in a similar fashion. It occurs as NADP and NADPH + HT The utilization of NAD is illustrated in the sections on glycolysis, the malatc-aspartate shuttle, ketone body metabolism, and fatty acid oxidation. The utilization of NADP is illustrated in the sectirrns concerning fatty acid synthesis and the pentose phosphate pathway. [Pg.593]


See other pages where Nicotinamide adenine dinucleotide phosphate niacin metabolism is mentioned: [Pg.795]    [Pg.131]   
See also in sourсe #XX -- [ Pg.274 ]




SEARCH



Adenine dinucleotide phosphate

Adenine metabolism

Dinucleotide

Niacin

Niacin Nicotinamide adenine dinucleotide

Niacin phosphate

Nicotinamide Niacin

Nicotinamide adenine

Nicotinamide adenine dinucleotid

Nicotinamide adenine dinucleotide

Nicotinamide adenine dinucleotides

Nicotinamide dinucleotide

© 2024 chempedia.info