Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron-nickel alloys pitting corrosion

Nickel-iron alloys suffer significantly less corrosion than mild steel when exposed to a soft, fresh water but Friend found that the resistance to pitting is only slightly greater (Table 3,34). [Pg.579]

Replacing some of the nickel with iron produces a family of alltws with intermediate corrosion resistance between stainless steels and the Ni-Cr-Mo alloys. Alloys such as Incoloy 825 and Hastelloy G-3 and G-30 are in this family. Incoloy 825 has 40 percent Ni, 21 percent Cr, 3 percent Mo, and 2.25 percent Cu. Hastelloy G-3 contains 44 percent Ni, 22 percent Cr, 6.5 percent Mo, and 0.05 percent C maximum. These alloys have extensive applications in sulfuric acid systems. Because of their increased nickel and molybdenum contents they are more tolerant of chloride-ion contamination than are standard stainless steels. The nickel content decreases the risk of stress-corrosion cracking molybdenum improves resistance to crevice corrosion and pitting. Many of the nickel-based alloys are proprietary and are coverecf by the following specifications ... [Pg.33]

Pitting corrosion is usually associated with active-passive-type alloys and occurs under conditions specific to each alloy and environment. This mode of localized attack is of major commercial significance since it can severely limit performance in circumstances where, otherwise, the corrosion rates are extremely low. Susceptible alloys include the stainless steels and related alloys, a wide series of alloys extending from iron-base to nickel-base, aluminum, and aluminum-base alloys, titanium alloys, and others of commercial importance but more limited in use. In all of these alloys, the polarization curves in most media show a rather sharp transition from active dissolution to a state of passivity characterized by low current density and, hence, low corrosion rate. As emphasized in Chapter 5, environments that maintain the corrosion potential in the passive potential range generally exhibit extremely low... [Pg.277]

The major alloying element contributing to resistance to pitting corrosion in iron- and nickel-base alloys is chromium. The effect of chromium in reducing both the critical current density and the passivating potential of iron in 1 N H2S04 is shown by the polarization curves of... [Pg.304]

Because the binary nickel-molybdenum alloys have poor physical properties (low ductility, poor workability), other elements, for example, iron, are added to form ternary or multicomponent alloys. These are also difficult to work, but they mark an improvement over the binary alloys. Resistance of such alloys to hydrochloric and sulfuric acids is better than that of nickel, but it is not improved with respect to oxidizing media (e.g., HNO3). Since the Ni-Mo-Fe alloys have active corrosion potentials and do not, therefore, establish passive-active cells, they do not pit in the strong acid media to which they are usually exposed in practice. [Pg.412]

By alloying nickel with both molybdenum and chromium, an alloy is obtained resistant to oxidizing media imparted by alloyed chromium, as well as to reducing media imparted by molybdenum. One such alloy, which also contains a few percent iron and tungsten (AUoy C), is immune to pitting and crevice corrosion in seawater (10-year exposure) and does not tarnish appreciably when exposed to marine atmospheres. Alloys of this kind, however, despite improved resistance to Cl, corrode more rapidly in hydrochloric acid than do the nickel-molybdenum alloys that do not contain chromium. [Pg.412]

Description and corrosion resistance. Incoloy 825 is a nickel-iron-chromium alloy with additions of molybdenum and copper. It has excellent resistance to both reducing and oxidizing acids, stress-corrosion cracking, and localized attack such as pitting and crevice corrosion. The alloy is especially resistant to sulfuric and phosphoric acids. [Pg.684]

The properties of the interface metal/solution. Cast iron corrodes because of exposure of its graphite to the surface (graphitic corrosion), which is cathodic to both low-alloy and mild steels. The trim of a valve must always maintain dimensional accuracy and be free of pitting and hence it should stay cathodic to the valve body. Hence, in aggressive media, valve bodies are frequently chosen of steel rather than cast iron. Because of increased anodic polarization, low-alloy steel (Cr and Ni as noble components) is cathodic to normal steel in most natural media. Accordingly, steel bolts and nuts coupled to underground mild steel pipes, or a weld rod used for steel plates on the hull of a ship, should always be of a low-nickel, low chromium steel or from a similar composition to that of the steel pipe.7... [Pg.349]


See other pages where Iron-nickel alloys pitting corrosion is mentioned: [Pg.581]    [Pg.614]    [Pg.7]    [Pg.486]    [Pg.905]    [Pg.124]    [Pg.146]    [Pg.1048]    [Pg.58]    [Pg.347]    [Pg.368]    [Pg.391]    [Pg.154]    [Pg.329]    [Pg.304]    [Pg.308]    [Pg.290]    [Pg.556]    [Pg.1077]    [Pg.411]    [Pg.1998]    [Pg.837]    [Pg.157]    [Pg.179]    [Pg.180]    [Pg.204]    [Pg.212]    [Pg.212]    [Pg.243]    [Pg.537]    [Pg.618]    [Pg.650]    [Pg.685]    [Pg.350]    [Pg.361]    [Pg.290]    [Pg.906]    [Pg.326]    [Pg.483]    [Pg.284]   
See also in sourсe #XX -- [ Pg.3 , Pg.93 ]

See also in sourсe #XX -- [ Pg.3 , Pg.93 ]




SEARCH



Alloying nickel

Corrosion alloying

Iron: corrosion

Nickel corrosion

Pitting corrosion

Pitting corrosion alloys

© 2024 chempedia.info