Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel complexes, ring metalation

It has been found that certain 2 + 2 cycloadditions that do not occur thermally can be made to take place without photochemical initiation by the use of certain catalysts, usually transition metal compounds. Among the catalysts used are Lewis acids and phosphine-nickel complexes.Certain of the reverse cyclobutane ring openings can also be catalytically induced (18-38). The role of the catalyst is not certain and may be different in each case. One possibility is that the presence of the catalyst causes a forbidden reaction to become allowed, through coordination of the catalyst to the n or s bonds of the substrate. In such a case, the... [Pg.1083]

Macrocycles may also promote the formation of less common coordination geometries for particular metal ions because of increased macrocyclic ring strain on coordination. Such an effect is illustrated by the variation in the structures of the nickel complexes of the 14-, 16-, 18-, and 20-mem-bered tropocoronand macrocycles of type (14) (Imajo, Nakanishi,... [Pg.7]

Scheme 6.27 considers other, formally confined, conformers of cycloocta-l,3,5,7-tetraene (COT) in complexes with metals. In the following text, M(l,5-COT) and M(l,3-COT) stand for the tube and chair structures, respectively. M(l,5-COT) is favored in neutral (18-electron) complexes with nickel, palladium, cobalt, or rhodium. One-electron reduction transforms these complexes into 19-electron forms, which we can identify as anion-radicals of metallocomplexes. Notably, the anion-radicals of the nickel and palladium complexes retain their M(l,5-COT) geometry in both the 18- and 19-electron forms. When the metal is cobalt or rhodium, transition in the 19-electron form causes quick conversion of M(l,5-COT) into M(l,3-COT) form (Shaw et al. 2004, reference therein). This difference should be connected with the manner of spin-charge distribution. The nickel and palladium complexes are essentially metal-based anion-radicals. In contrast, the SOMO is highly delocalized in the anion-radicals of cobalt and rhodium complexes, with at least half of the orbital residing in the COT ring. For this reason, cyclooctateraene flattens for a while and then acquires the conformation that is more favorable for the spatial structure of the whole complex, namely, M(l,3-COT) (see Schemes 6.1 and 6.27). [Pg.338]

It is usual for a coordination compound to write the formula of a ligand with the donor atom first. The nickel complex represented above has both S and P bonded to the metal (as well as all the carbon atoms of the C5H5). The ring structure for chlorocyclohexane should be obvious. [Pg.16]

We can now make sensible guesses as to the order of rate constant for water replacement from coordination complexes of the metals tabulated. (With the formation of fused rings these relationships may no longer apply. Consider, for example, the slow reactions of metal ions with porphyrine derivatives (20) or with tetrasulfonated phthalocyanine, where the rate determining step in the incorporation of metal ion is the dissociation of the pyrrole N-H bond (164).) The reason for many earlier (mostly qualitative) observations on the behavior of complex ions can now be understood. The relative reaction rates of cations with the anion of thenoyltrifluoroacetone (113) and metal-aqua water exchange data from NMR studies (69) are much as expected. The rapid exchange of CN " with Hg(CN)4 2 or Zn(CN)4-2 or the very slow Hg(CN)+, Hg+2 isotopic exchange can be understood, when the dissociative rate constants are estimated. Reactions of the type M+a + L b = ML+(a "b) can be justifiably assumed rapid in the proposed mechanisms for the redox reactions of iron(III) with iodide (47) or thiosulfate (93) ions or when copper(II) reacts with cyanide ions (9). Finally relations between kinetic and thermodynamic parameters are shown by a variety of complex ions since the dissociation rate constant dominates the thermodynamic stability constant of the complex (127). A recently observed linear relation between the rate constant for dissociation of nickel complexes with a variety of pyridine bases and the acidity constant of the base arises from the constancy of the formation rate constant for these complexes (87). [Pg.58]

Metal complexes with fluoro-/3-diketones have been comprehensively reviewed.1585 The introduction of electron-withdrawing groups in the chelate ring increases the Lewis acidity strength of the ML2 complexes, and consequently the bis adducts of the fluoro-/3-diketonato complexes are more stable than the corresponding complexes with /3-diketones. As an example of a nickel complex with 1,1,1-trifluoroacetylacetone which does not have a counterpart in the nickel acetylacetonate complexes we can mention the hexanuclear complex Ni6Lio(OH)2(H20)2.1586... [Pg.145]

Cycloalkenes, into if-allyl palladium complexes, 8, 363 Cycloalkenyl rings, metal complex conformational interconversions, 1, 414 Cycloalkynes, in nickel complexes, 8, 147 (Cyclobutadiene)cyclopentadienyl complexes, with cobalt, polymercuration, 2, 435 Cyclobutadienes... [Pg.89]

Attempts to prepare the nickel ) complex of 91 by transmetallation have resulted instead in the formation of addition products 91a or the ring-opened product 93. In this case, the stereochemical preferences of the metal impose a new conformation on the ligand and thereby enhance its reactivity 79>. [Pg.96]


See other pages where Nickel complexes, ring metalation is mentioned: [Pg.626]    [Pg.1272]    [Pg.10]    [Pg.196]    [Pg.857]    [Pg.264]    [Pg.87]    [Pg.16]    [Pg.519]    [Pg.256]    [Pg.438]    [Pg.303]    [Pg.27]    [Pg.694]    [Pg.15]    [Pg.694]    [Pg.45]    [Pg.162]    [Pg.267]    [Pg.423]    [Pg.525]    [Pg.373]    [Pg.517]    [Pg.755]    [Pg.256]    [Pg.241]    [Pg.10]    [Pg.905]    [Pg.313]    [Pg.158]    [Pg.286]    [Pg.316]    [Pg.82]    [Pg.278]    [Pg.48]    [Pg.235]    [Pg.149]    [Pg.235]   
See also in sourсe #XX -- [ Pg.387 ]




SEARCH



Metal nickel

Metal rings

Metallic nickel

Ring complexes

© 2024 chempedia.info