Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutral atoms exceptions

Figure 19.5 The Diagonal Mnemonic Device for Applying the Aufbau Principle to Neutral Atoms. Exceptions to the rules of this device are given in Table 19.1. Figure 19.5 The Diagonal Mnemonic Device for Applying the Aufbau Principle to Neutral Atoms. Exceptions to the rules of this device are given in Table 19.1.
As mentioned above, HMO theory is not used much any more except to illustrate the principles involved in MO theory. However, a variation of HMO theory, extended Huckel theory (EHT), was introduced by Roald Hof nann in 1963 [10]. EHT is a one-electron theory just Hke HMO theory. It is, however, three-dimensional. The AOs used now correspond to a minimal basis set (the minimum number of AOs necessary to accommodate the electrons of the neutral atom and retain spherical symmetry) for the valence shell of the element. This means, for instance, for carbon a 2s-, and three 2p-orbitals (2p, 2p, 2p ). Because EHT deals with three-dimensional structures, we need better approximations for the Huckel matrix than... [Pg.379]

All heteronuclear diatomic molecules, in their ground electronic state, dissociate into neutral atoms, however strongly polar they may be. The simple explanation for this is that dissociation into a positive and a negative ion is much less likely because of the attractive force between the ions even at a relatively large separation. The highly polar Nal molecule is no exception. The lowest energy dissociation process is... [Pg.389]

In any case, as many authors have previously pointed out the n + rule is strictly speaking subject to about 20 exceptions, thus further hinting that it has no fundamental value.11 The best known of these anomalies occur in the neutral atoms of chromium and copper which have the following expected and observed electronic configurations, which generations of general chemistry student have been obliged to learn ... [Pg.139]

All calculations are scalar relativistic calculations using the Douglas-Kroll Hamiltonian except for the CC calculations for the neutral atoms Ag and Au, where QCISD(T) within the pseudopotential approach was used [99], CCSD(T) results for Ag and Au are from Sadlej and co-workers, and Cu and Cu from our own work, using an uncontracted (21sl9plld6f4g) basis set for Cu [6,102] and a full active orbital space. [Pg.193]

Rao and Singh32 calculated relative solvation free energies for alkyl- and tetra-alkylammonium ions using same conditions as described before for neutral molecules (except, atomic partial charges were not scaled for ions). The values obtained with coordinate coupling were in better agreement with... [Pg.113]

The universal function x(x) obtained by numerical integration and valid for all neutral atoms decreases monotonically. The electron density is similar for all atoms, except for a different length scale, which is determined by the quantity b and proportional to Z. The density is poorly determined at both small and large values of r. However, since most electrons in complex atoms are at intermediate distances from the nucleus the Thomas-Fermi model is useful for calculating quantities that depend on the average electron density, such as the total energy. The Thomas-Fermi model therefore cannot account for the periodic properties of atoms, but provides a good estimate of initial fields used in more elaborate calculations like those to be discussed in the next section. [Pg.352]

The first sum is over all ionic species in the solution, the second sum over all neutral species except the metal atoms. For a pure metal the concentration of the metal atoms is constant so the differential of the chemical potential of the metal atoms vanishes dpM = 0 we note in passing that complications can arise for amalgams, if the surface concentration of the metal atoms changes. All chemical potentials in Eq. (16.11) refer to the solution. [Pg.220]

The standard hydrocarbon model, data analysis approach 2, does a poor job of estimating in this system (1.83 eV). This has led us to recognize that the case of an atomic ion associating with a neutral is exceptional because of the small number of rotational degrees of freedom of the reactants. With an appropriate correction for this effect, the standard hydrocarbon model estimate is lowered to about 1.5 eV, which is an entirely acceptable estimate. [Pg.106]

The ionization energy of Ar is 15.8 electron volts (eV), which is higher than those of all elements except He, Ne, and F. In an Ar plasma, analyte elements can be ionized by collisions with Ar+, excited Ar atoms, or energetic electrons. In atomic emission spectroscopy, we usually observe the more abundant neutral atoms, M. However, the plasma can be directed into a mass spectrometer (Chapter 22), which separates and measures ions according to their mass-to-charge ratio.17 For the most accurate measurements of isotope ratios, the mass spectrometer has one detector for each desired isotope.18... [Pg.468]

So far the discussion has pertained only to neutral atoms. Simple ions produced from atoms by addition or removal of electrons follow, however, much the same rule. In general, atomic species, whether charged or neutral, have the same electron configuration if they are isoelectronic to each other, that is, if they have the same total number of electrons. Thus Ca++, K+, Cl and S all have the same number of electrons as argon and all have the configuration 3s2 3p6 in the last occupied levels. The only exceptions to this rule may occur... [Pg.28]

Photoionization of neutral atoms and molecules and electron-ion collisions, for example, are rich in infinite Rydberg series of Feshbach resonances. On the other hand, only a finite number of Feshbach (and possibly shape) resonances occur in electron-neutral collisions and photodetachment of an electron attached to a neutral species, with an exception of the following cases. [Pg.206]

Careful reviews by Raes (1985) and Raes et al. (1985) leave unanswered the question of the role of humidity, and of acid or organic vapours, in modifying the diffusivity of decay product ions. By comparison with the mobility in normal air of decay product and ordinary atmospheric small ions, the diffusivity of decay product small ions is probably 2 to 3 x 10-6 m2 s-1. For neutral atoms, or possibly oxide molecules, most measurements give D in the range 5 to 8 x 10-6 m2 s-1, except where radiolytic reaction products or reactive trace gases are present in sufficient concentration to form intermediate ions. [Pg.29]

In concluding this chapter, we point out that there are far more research opportunities than hard answers in this field of ion emitters. This field is dominated by systems in which the element from which ions are emitted is embedded in a matrix that enhances ion emission. Indeed, with the exception of the small number of emitters in which ions are emitted from pure refractory metals at the temperature limits of the material, pure materials predominantly volatilize neutral atoms and/or molecules when heated to temperatures sufficiently high to force volatilization to the gas phase. Thus, the key to the development of superior ion emitters seems to be to develop better understanding of the processes that cause the matrices to force the element to volatilize as ions rather than neutrals. With this better understanding perhaps new and better ion emitters can be developed. [Pg.259]

Negative Polar Valence. There still exists the usual electrostatic attraction between the electron and the kernel of the cesium atom. The kernel consists of the nucleus and all the electron layers except the outer layer, or valence layer. In fact, the electron would ordinarily be held in the outer layer unless some other atom were ready to take it up. Neutral atoms with nearly complete outer shells show a strong tendency to take on enough electrons to complete the shell. This tendency is strong enough to overcome the electrostatic repulsion of the other electrons and impart to the atom a net negative charge. Thus the chlorine atom Cln 2-8-7... [Pg.359]

Ley and co-workers (19) have presented quasi-experimental free atom-to-metal core level shifts for a sequence of elements, Ti through Zn. Free atom photoemission data do not exist in most of these cases, and Ley et al. used, instead, ground state calculations in which the neutral atoms were given 3dn4s2 configurations except for Cr(core level binding energy shifts,... [Pg.95]

For practical purposes, then, the third transition series begins with hafnium, having the ground state outer electron configuration 6s25d2, and embraces the elements Ta, W, Re, Os, Ir, Pt, and Au, all of which have partially filled 5d shells in one or more chemically important oxidation states as well as (except Au) in the neutral atom. [Pg.634]


See other pages where Neutral atoms exceptions is mentioned: [Pg.28]    [Pg.28]    [Pg.282]    [Pg.21]    [Pg.13]    [Pg.206]    [Pg.336]    [Pg.320]    [Pg.113]    [Pg.207]    [Pg.207]    [Pg.158]    [Pg.408]    [Pg.420]    [Pg.428]    [Pg.555]    [Pg.568]    [Pg.569]    [Pg.871]    [Pg.1380]    [Pg.98]    [Pg.7]    [Pg.35]    [Pg.145]    [Pg.151]    [Pg.170]    [Pg.193]    [Pg.101]    [Pg.105]    [Pg.2]    [Pg.338]    [Pg.9]    [Pg.366]    [Pg.306]   
See also in sourсe #XX -- [ Pg.81 , Pg.811 ]




SEARCH



Exceptions

© 2024 chempedia.info