Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers, network structures from

Any formal definition of a gel has been avoided, because its formulation would be difficult on the basis of external properties. By any criterion, a 1 % aqueous solution of agar does form a gel when it is cooled from 95 to 20°, whereas a 1 % solution of sucrose does not but properties may be so continuous between these extremes that any dividing line would be arbitrary. Most of this Chapter is concerned with fairly permanent network structures formed from polymer solutions. As a definition of gels, this description is incomplete. Some cellulose gels, and pastes of gelatinized, starch granules, would be excluded, because they are formed by limited dispersion of solids. In other words, an arbitrary choice will be made to focus on those gels that are dilute with respect to polymer, because the information available about them at the molecular level is more precise than for others. [Pg.270]

It is somewhat difficult conceptually to explain the recoverable high elasticity of these materials in terms of flexible polymer chains cross-linked into an open network structure as commonly envisaged for conventionally vulcanised rubbers. It is probably better to consider the deformation behaviour on a macro, rather than molecular, scale. One such model would envisage a three-dimensional mesh of polypropylene with elastomeric domains embedded within. On application of a stress both the open network of the hard phase and the elastomeric domains will be capable of deformation. On release of the stress, the cross-linked rubbery domains will try to recover their original shape and hence result in recovery from deformation of the blended object. [Pg.303]

Serious deviations of the polymer network structure from the ideal one can have several causes. One of them is the crosslinking agent involvement in intramolecular cycle formation. The contribution of this reaction grows with the system dilution as well as when the crosslinker units in the chain are close one to the other, i.e. its fraction in the copolymer increases. All this is in good agreement with the observed trend. [Pg.102]

Amino resins are those polymers prepared by reaction of either urea or melamine with formaldehyde. In both cases the product that results from the reaction has a well crosslinked network structure, and hence is a thermoset polymer. The structures of the two parent amino compounds are shown in Figure 1.1. [Pg.14]

Gelation and the attendent insolubility mentioned above are encountered in all of the nonlinear polymerizations listed in Table I and in many others likewise. Naturally these characteristics have been attributed to the restraining effects of three-dimensional, or space, network structures of infinite size within the polymer. This is the feature which distinguishes most nonlinear from linear polymers. [Pg.47]

Another type of network imperfection, resulting from cross-linking of two units not distantly related structurally, is indicated in Fig. 94. Cross-linkages such as B are wasted (except insofar as the loop may be involved in entanglements not otherwise operative). The proportion of these short path cross-linkages should be small ordinarily but could become very large if the cross-linking process were carried out in a dilute solution of the polymer. [Pg.464]

A suitable expression for AFm may be obtained from Eq. (XII-22), bearing in mind that the number U2 of polymer molecules is to be equated to zero owing to the absence of individual polymer molecules in the network structure. Thus... [Pg.577]

In conclusion, the lesson learned from the research carried out to date on the subject of polycarbosilanes is that the general rule that linear, noncrosslinked polymers are not suitable preceramic polymers applies here as well. Crosslinked network-type polymers are needed. Such structures can be generated in more than one way, but in the case of the polycarbosilanes they have, to date, been obtained mainly by thermolytic routes thermal treatment (with or without other chemical additives) in the case of the Yajima polycarbosilanes and the thermolysis of tetramethylsilane in the case of the Bayer process-derived polycarbosilane. [Pg.34]

Zinc carboxylate interactions have been exploited as part of a fluorescent molecular sensor for uronic acids. The sensors feature two interactions coordination of the carboxylate to the zinc and a boronic acid diol interaction.389 Photoluminescent coordination polymers from hydrothermal syntheses containing Zn40 or Zn4(OH)2 cores with isophthalate or fumarate and 4,4 -bipyridine form two- and three-dimensional structures. Single X-ray diffraction of both dicarboxylates identified the network structure.373... [Pg.1178]


See other pages where Polymers, network structures from is mentioned: [Pg.66]    [Pg.22]    [Pg.368]    [Pg.93]    [Pg.288]    [Pg.228]    [Pg.380]    [Pg.81]    [Pg.825]    [Pg.15]    [Pg.121]    [Pg.102]    [Pg.1039]    [Pg.297]    [Pg.494]    [Pg.134]    [Pg.156]    [Pg.237]    [Pg.126]    [Pg.194]    [Pg.23]    [Pg.30]    [Pg.35]    [Pg.55]    [Pg.66]    [Pg.66]    [Pg.90]    [Pg.463]    [Pg.583]    [Pg.12]    [Pg.234]    [Pg.146]    [Pg.465]    [Pg.82]    [Pg.261]    [Pg.154]    [Pg.125]    [Pg.3]   


SEARCH



Network structure

Networks Polymer network

Polymer network structure

Polymer networked

Polymer networks

Structural networks

© 2024 chempedia.info