Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Negative metal catalysis

Many reactions catalyzed by the addition of simple metal ions involve chelation of the metal. The familiar autocatalysis of the oxidation of oxalate by permanganate results from the chelation of the oxalate and Mn (III) from the permanganate. Oxidation of ascorbic acid [50-81-7] C HgO, is catalyzed by copper (12). The stabilization of preparations containing ascorbic acid by the addition of a chelant appears to be negative catalysis of the oxidation but results from the sequestration of the copper. Many such inhibitions are the result of sequestration. Catalysis by chelation of metal ions with a reactant is usually accomphshed by polarization of the molecule, faciUtation of electron transfer by the metal, or orientation of reactants. [Pg.393]

Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)... Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)...
Conversely, an atom in Fig. 6.23 with an affinity level that initially is empty becomes partly occupied upon adsorption. Hence, charge is transferred from the metal to the atom. This sets up a dipole that increases the surface contribution to the work function. This is the case for adsorbed halides, which will be negatively charged at the surface. We will later see that such dipole fields can explain promotion and inhibition effects caused by various adsorbates in catalysis. [Pg.244]

What was evident in 1950 was that very few surface-sensitive experimental methods had been brought to bear on the question of chemisorption and catalysis at metal surfaces. However, at this meeting, Mignolet reported data for changes in work function, also referred to as surface potential, during gas adsorption with a distinction made between Van der Waals (physical) adsorption and chemisorption. In the former the work function decreased (a positive surface potential) whereas in the latter it increased (a negative surface potential), thus providing direct evidence for the electric double layer associated with the adsorbate. [Pg.4]

Cofacial ruthenium and osmium bisporphyrins proved to be moderate catalysts (6-9 turnover h 1) for the reduction of proton at mercury pool in THF.17,18 Two mechanisms of H2 evolution have been proposed involving a dihydride or a dihydrogen complex. A wide range of reduction potentials (from —0.63 V to —1.24 V vs. SCE) has been obtained by varying the central metal and the carbon-based axial ligand. However, those catalysts with less negative reduction potentials needed the use of strong acids to carry out the catalysis. These catalysts appeared handicapped by slow reaction kinetics. [Pg.475]

A general trend observed in many of the reports concerning catalysis with periphery-functionalized dendrimers is that the activity of the catalysts decreases with the dendrimer generation, which is usually attributed to the increasing steric bulk around the metal centers as the dendrimer generation increases. Some of these negative effects have already been discussed in Section II. [Pg.134]

For the [Pdltriphosphinejlsolvent)] " " complexes, the metallocarboxylic acid formed in step 3 of Sch. 2 is not ready to undergo C—O bond cleavage. In order for this reaction to occur, an additional electron transfer, solvent loss, and a second protonation have to occur. Of particular interest in this sequence is the loss of a weakly coordinated solvent molecule (step 5), to produce a vacant site on the metal for water to occupy as the C—O bond of CO2 is broken to form coordinated CO and coordinated water [34, 35]. This C—O bond cleavage reaction is the slow step in the catalytic cycle for these catalysts at low acid concentrations, and a vacant coordination site is required for this reaction to occur. C—O bond cleavage is also the slow step for Fe(porphyrin) catalysts at low acid concentrations (H+, Mg +, or CO2) [37-39]. In this case, a vacant coordination site is not required. However, the potentials at which catalysis occurs in this case (approximately —2.0 V vs. ferrocene/ferrocen-ium) is much more negative than those... [Pg.213]


See other pages where Negative metal catalysis is mentioned: [Pg.29]    [Pg.16]    [Pg.131]    [Pg.448]    [Pg.508]    [Pg.330]    [Pg.20]    [Pg.1]    [Pg.171]    [Pg.225]    [Pg.204]    [Pg.184]    [Pg.88]    [Pg.112]    [Pg.224]    [Pg.233]    [Pg.514]    [Pg.199]    [Pg.387]    [Pg.275]    [Pg.41]    [Pg.348]    [Pg.309]    [Pg.131]    [Pg.1459]    [Pg.112]    [Pg.99]    [Pg.123]    [Pg.638]    [Pg.271]    [Pg.367]    [Pg.220]    [Pg.190]    [Pg.296]    [Pg.224]    [Pg.229]    [Pg.157]    [Pg.252]    [Pg.385]    [Pg.146]    [Pg.523]   
See also in sourсe #XX -- [ Pg.171 ]




SEARCH



Metallic negatives

Negative catalysis

© 2024 chempedia.info