Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural rubber nanocomposites intercalated nanocomposite

This is the most widely used naturally occurring rubber. The literature search shows that many research groups have prepared nanocomposites based on this rubber [29-32]. Varghese and Karger-Kocsis have prepared natural rubber (NR)-based nanocomposites by melt-intercalation method, which is very useful for practical application. In their study, they have found increase in stiffness, elongation, mechanical strength, and storage modulus. Various minerals like MMT, bentonite, and hectorite have been used. [Pg.34]

The effect of polymer-filler interaction on solvent swelling and dynamic mechanical properties of the sol-gel-derived acrylic rubber (ACM)/silica, epoxi-dized natural rubber (ENR)/silica, and polyvinyl alcohol (PVA)/silica hybrid nanocomposites was described by Bandyopadhyay et al. [27]. Theoretical delineation of the reinforcing mechanism of polymer-layered silicate nanocomposites has been attempted by some authors while studying the micromechanics of the intercalated or exfoliated PNCs [28-31]. Wu et al. [32] verified the modulus reinforcement of rubber/clay nanocomposites using composite theories based on Guth, Halpin-Tsai, and the modified Halpin-Tsai equations. On introduction of a modulus reduction factor (MRF) for the platelet-like fillers, the predicted moduli were found to be closer to the experimental measurements. [Pg.7]

Mondragon et al. [250] used unmodified and modified natural mbber latex (uNRL and mNRL) to prepare thermoplastic starch/natural rubber/montmorillonite type clay (TPS/NR/Na+-MMT) nanocomposites by twin-screw extrusion. Transmission electron microscopy showed that clay nanoparticles were preferentially intercalated into the mbber phase. Elastic modulus and tensile strength of TPS/NR blends were dramatically improved as a result of mbber modification. Properties of blends were almost unaffected by the dispersion of the clay except for the TPS/ mNR blend loading 2 % MMT. This was attributed to the exfoliation of the MMT. [Pg.144]

It has been found that the interaction of intercalated and/or exfoliated nanoparticles may restrict the mobility of the matrix polymer chains, which lead to an increase of Tg values, as observed in nanocomposites of polyamide-12-layered silicates [102], nitrile rubber-organophilic montmorillonite [103], natural rubber-montmorillonite [104], and EVA-day [105]. A slight increase with the organosurface treatment in Tg values was noticed in poly(vinyl chloride)-clay [106,107], poly(vinyl chloride)-CNTs [108], polyurethane-montmorillonite [109-111], LLDPE-layered tetrasilisic fluoromica [112], PP-montmorillonite [113-115], PP-sUica [116], and styrene-butadiene rubber [117]. [Pg.131]

The incorporation of organoclay also resulted in a noticeable increase in the value of mixing torque of NR-organoclay nanocomposite, as compared to the pristine NR. " " This is due to the octadecylamine intercalation between the layers of the clay increasing the interlayer distance, thus easing the intercalation and confinement of natural rubber chains in the galleries of the layered-silicate. Thus a better interaction between the silicate and natural rubber is obtained, which also increases the torque required for blending. ... [Pg.309]

Unlike polymer-clay nanocomposites, in rubber-clay nanocomposites complete exfoliation of clay layers results in disappearance of the diffraction maxima in their XRD patterns. However, this can also occur due to other reasons, like extremely low concentration of clay materials in the composites, crystal defects, etc. The majority of the reports on rubber-clay nanocomposites display the intercalated or swollen nature of the clay structures. The presence of the basal reflections in the XRD patterns of such type of nanocomposites indicates that the clay crystal structure is not destroyed completely. But, shifting of their positions to lower 26 values is interpreted as an expansion of the interlayer region by the macromolecular rubber chains. Besides, broadening of the characteristic reflections in nanocomposites is often related to the defects in the crystal layer stacking caused by the interlayer polymeric species. [Pg.252]

Kong et al. [115] synthesized hy melt-intercalation silicone rubber (SR)/clay nanocomposites using synthetic Fe-montmoriUonite (Fe-MMT) and natural Na-MMT which were modified by cetyltrimethylammoniumbromide, surfactant. They obtained exfoliated and intercalated nanocomposites. With TGA and mechanical performance found that with the presence of iron significantiy increased the onset temperarnre of thermal degradation in SR/Fe-MMT nanocomposites. In addition, the thermal stability, gel fraction and mechanical property of SR/Fe-MMT were different from the SR/Na-MMT nanocomposites, so the iron not only in thermal degradation but also in the vulcanization process acted as an antioxidant and radicals trap. A new flame-retardant system, SR/Fe-OMT based on an EVA matrix, was examined Fang et al. [ 116]. The experimental analyses showed that the exfoliated Fe-OMT had better dispersion in the EVA matrix than Na-OMT, and it was more effective in improving... [Pg.177]


See other pages where Natural rubber nanocomposites intercalated nanocomposite is mentioned: [Pg.310]    [Pg.43]    [Pg.15]    [Pg.96]    [Pg.115]    [Pg.572]    [Pg.572]    [Pg.573]    [Pg.252]    [Pg.392]    [Pg.392]    [Pg.393]    [Pg.393]    [Pg.394]    [Pg.397]    [Pg.400]    [Pg.402]    [Pg.127]    [Pg.310]    [Pg.318]    [Pg.38]    [Pg.786]    [Pg.39]    [Pg.85]    [Pg.88]    [Pg.97]    [Pg.2301]    [Pg.109]    [Pg.177]    [Pg.139]    [Pg.379]    [Pg.73]    [Pg.311]   
See also in sourсe #XX -- [ Pg.790 ]




SEARCH



Intercalated nanocomposites

Intercalated nanocomposites rubber

Intercalation nanocomposites

Nanocomposite intercalated

Natural rubber nanocomposites

© 2024 chempedia.info