Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ranitidine Naproxen

VERAPAMIL DILTIAZEM PROMETHAZINE PHENAZOPYRIDINE DESIPRAMINE PROGESTERONE IMIPRAMINE CHLORPROMAZINE GRISEOFULVIN PROPRANOLOL CARBAMAZEPINE QUININE IBUPROFEN PIROXICAM PRIMAQUINE CAFFEINE ANTIPYRINE METOPROLOL NAPROXEN KETOPROFEN SULPIRIDE TERBUTALINE FUROSEMIDE SULPHASALAZINE RANITIDINE HYDROCHLOROTHIAZIDE ATENOLOL AMIOLORIDE... [Pg.177]

The two-component lipid models were also characterized in the absence of sink conditions (Table 7.8). Comparisons between models 7.0 (Table 7.7) and 1.0 (Table 7.5) suggest that negative charge in the absence of sink causes the permeabilities of many of the bases to decrease. Exceptions are quinine, prazosin, primaquine, ranitidine, and especially metoprolol. The inclusion of 0.6% PA causes Pe of metoprolol to increase nearly 10-fold, to a value twice that of propranolol, a more lipophilic molecule than metoprolol (based on the octanol-water scale). Naproxen and ketoprofen become notably more permeable in the two-component system. Surprisingly, the neutral progesterone becomes significantly less permeable in this system. [Pg.181]

Figure 2.5 Reported concentrations of various PPCPs in Wastewater effluents by several research groups. On the x axis are respective PPCPs that are primarily cosmetics (1 = HHCB, 2 = AHTN, 3 = acetophenone, 4 = camphor, 5 = isobomeol, 6 = skatol, 7 = celestolide, i.e., AHMI, 8 = Phantolide, i.e., AHMI), the lotion ingredient (9 = methyl salicylate), two disinfectants (10 = triclosan and 11 = trilocarban), antihypertensive (12 = dehydronifedipine, 13 = diltiazem, 14 = bezafibrate, and 15 = gemfibrozil), analgesics and anti-inflammatories (16 = naproxen, 17 = ibuprofen, 18 = codeine), antimicrobials (19 = chlortetracycline, 20 = erythromycin, 21 = novobiocin, 22 = oxytetracycline, 23 = sulfamethaxazole, 24 = thiabendazole, 25 = trimethoprim), anxiolytic sedative (26 = carbamazepine), antidiabetic (27 = metaformin), reproductive (28 = 17(3 estradiol, 29 = 17a-ethinyl estradiol), GIT (30 = cimetidine, 31 = ranitidine), and respiratory (32 = Albuterol). The concentrations were compiled from Boyd et al. (2003), Gagne et al. (2006), Glassmeyer et al. (2005), Halden and Pauli (2005), Huang and Sedlak (2001), Ricking et al. (2003), and Temes et al. (2003). Figure 2.5 Reported concentrations of various PPCPs in Wastewater effluents by several research groups. On the x axis are respective PPCPs that are primarily cosmetics (1 = HHCB, 2 = AHTN, 3 = acetophenone, 4 = camphor, 5 = isobomeol, 6 = skatol, 7 = celestolide, i.e., AHMI, 8 = Phantolide, i.e., AHMI), the lotion ingredient (9 = methyl salicylate), two disinfectants (10 = triclosan and 11 = trilocarban), antihypertensive (12 = dehydronifedipine, 13 = diltiazem, 14 = bezafibrate, and 15 = gemfibrozil), analgesics and anti-inflammatories (16 = naproxen, 17 = ibuprofen, 18 = codeine), antimicrobials (19 = chlortetracycline, 20 = erythromycin, 21 = novobiocin, 22 = oxytetracycline, 23 = sulfamethaxazole, 24 = thiabendazole, 25 = trimethoprim), anxiolytic sedative (26 = carbamazepine), antidiabetic (27 = metaformin), reproductive (28 = 17(3 estradiol, 29 = 17a-ethinyl estradiol), GIT (30 = cimetidine, 31 = ranitidine), and respiratory (32 = Albuterol). The concentrations were compiled from Boyd et al. (2003), Gagne et al. (2006), Glassmeyer et al. (2005), Halden and Pauli (2005), Huang and Sedlak (2001), Ricking et al. (2003), and Temes et al. (2003).
A 64-year-old man with type II diabetes, hypertension, and bilateral renal artery stenosis presented with confusion and dysarthria related to profound hypoglycemia (2.2 mmol/1). He was taking naproxen 500 mg bd, ramipril 2.5 mg/day, glibenclamide 2.5 mg bd, metformin 850 mg bd, a thiazide diuretic, terazosin, ranitidine, paracetamol, and codeine. His plasma creatinine concentration, previously 185 pmol/1, was 362 pmol/1 and it fell to 210 imol/l after the withdrawal of ramipril and naproxen. [Pg.643]

Figure 6.3 Plot of the fraction of dose absorbed (in %) of various drugs as a function of the permeability estimates in the Caco-2 system. Key 1 D-glucose 2 verapamil 3 piroxicam 4 phenylalanine 5 cyclosporin 6 enalapril 7 cephalexim 8 losartan 9 lisinopril 10 amoxicillin 11 methyldopa 12 naproxen 13 an-tipyrine 14 desipramine 15 propanolol 16 amiloride 17 metoprolol 18 terbu-taline 19 mannitol 20 cimetidine 21 ranitidine 22 enalaprilate 23 atenolol 24 hydrochlorothiazide. Figure 6.3 Plot of the fraction of dose absorbed (in %) of various drugs as a function of the permeability estimates in the Caco-2 system. Key 1 D-glucose 2 verapamil 3 piroxicam 4 phenylalanine 5 cyclosporin 6 enalapril 7 cephalexim 8 losartan 9 lisinopril 10 amoxicillin 11 methyldopa 12 naproxen 13 an-tipyrine 14 desipramine 15 propanolol 16 amiloride 17 metoprolol 18 terbu-taline 19 mannitol 20 cimetidine 21 ranitidine 22 enalaprilate 23 atenolol 24 hydrochlorothiazide.
Figure 6.17 The classification of 42 drugs in the (solubility-dose ratio, apparent permeability) plane of the QBCS. The intersection of the dashed lines drawn at the cutoff points form the region of the borderline drugs. Key 1 acetyl salicylic acid 2 atenolol 3 caffeine 4 carbamazepine 5 chlorpheniramine 6 chlorothiazide 7 cimetidine 8 clonidine 9 corticosterone 10 desipramine 11 dexamethasone 12 diazepam 13 digoxin 14 diltiazem 15 disopyramide 16 furosemide 17 gancidovir 18 glycine 19 grizeofulvin 20 hydrochlorothiazide 21 hydrocortisone 22 ibuprofen 23 indomethacine 24 ketoprofen 25 mannitol 26 metoprolol 27 naproxen 28 panadiplon 29 phenytoin 30 piroxicam 31 propanolol 32 quinidine 33 ranitidine 34 salicylic acid 35 saquinavir 36 scopolamine 37 sulfasalazine 38 sulpiride 39 testosterone 40 theophylline 41 verapamil HC1 42 zidovudine. Figure 6.17 The classification of 42 drugs in the (solubility-dose ratio, apparent permeability) plane of the QBCS. The intersection of the dashed lines drawn at the cutoff points form the region of the borderline drugs. Key 1 acetyl salicylic acid 2 atenolol 3 caffeine 4 carbamazepine 5 chlorpheniramine 6 chlorothiazide 7 cimetidine 8 clonidine 9 corticosterone 10 desipramine 11 dexamethasone 12 diazepam 13 digoxin 14 diltiazem 15 disopyramide 16 furosemide 17 gancidovir 18 glycine 19 grizeofulvin 20 hydrochlorothiazide 21 hydrocortisone 22 ibuprofen 23 indomethacine 24 ketoprofen 25 mannitol 26 metoprolol 27 naproxen 28 panadiplon 29 phenytoin 30 piroxicam 31 propanolol 32 quinidine 33 ranitidine 34 salicylic acid 35 saquinavir 36 scopolamine 37 sulfasalazine 38 sulpiride 39 testosterone 40 theophylline 41 verapamil HC1 42 zidovudine.
STPs are found to be the major contributor of pharmaceuticals in the Ebro River water. Compounds more frequently detected in the Ebro River basin were analgesics (diclofenac, naproxen, ibuprofen), lipid regulators (gemfibrozil, bezafibrate), antibiotics (azythromycin, trimethoprim, erythromycin, sulfamethoxazole), the antiepileptic carbamazepine, the antihistaminic ranitidine, and the 6-blockers atenolol and sotalol, which are the ones of major consumption in Spain as well as the ones excreted at higher percentages as parent drugs. Concentrations detected in both waste and surface waters are from 100 to 1000 times lower than the levels reported to cause acute toxicity. However, with respect to chronic effects, for some of the most ubiquitous compounds the margin of safety is narrow. As a wide spectrum of pharmaceuticals has been detected in natural waters, effects of mixtures should also be taken into account. [Pg.297]

Cronqvist, J. Nilsson-Ehle, I. Determination of acyclovir in human serum hy hi -performance liquid chromatography. J.Liq.Chromatogr., 1988, 11, 2593-2601 [serum non-interfering acetaminophen, allopurinol, baclofen, carbacholine, cefuroxime, chlorpropamide, cilastatin, cloxacillin, diazepam, di-cumarol, digoxin, flucloxacillm, furosemide, fusidic acid, fusidic, glipizide, heparin, hydrochlorothiazide, imipenem, insulin, isoniazid, ketoprofen, metronidazole, naproxen, perphenazine, phenytoin, prednisolone, propranolol, p3razinamide, p3ridoxine, ranitidine, rifampicin, rifampin, spironolactone, streptomycin, sulfamethoxazole, trimethoprim, warfarin]... [Pg.32]

Also analyzed acebutolol, acepromazine, acetaminophen, acetazolamide, acetophenazine, albuterol, amitriptyline, amobarbital, amoxapine, antipsrrine, atenolol, atropine, azata-dine, baclofen, benzocaine, bromocriptine, brompheniramine, brotizolam, bupivacaine, buspirone, butabarbital, butalbital, caffeine, carbamazepine, cetirizine, chlorqyclizine, chlordiazepoxide, chlormezanone, chloroquine, chlorpheniramine, chlorpromazine, chlorpropamide, chlorprothixene, chlorthalidone, chlorzoxazone, cimetidine, cisapride, clomipramine, clonazepam, clonidine, clozapine, cocaine, codeine, colchicine, qyclizine, (yclo-benzaprine, dantrolene, desipramine, diazepam, diclofenac, diflunisal, diltiazem, diphenhydramine, diphenidol, dipheno late, dipyridamole, disopyramide, dobutamine, doxapram, doxepin, droperidol, encainide, ethidium bromide, ethopropazine, fenoprofen, fentanyl, flavoxate, fluoxetine, fluphenazine, flurazepam, flurbiprofen, fluvoxamine, fii-rosemide, glutethimide, glyburide, guaifenesin, haloperidol, homatropine, hydralazine, hydrochlorothiazide, hydrocodone, hydromorphone, hydro g chloroquine, hydroxyzine, ibuprofen, imipramine, indomethacin, ketoconazole, ketoprofen, ketorolac, labetalol, le-vorphanol, lidocaine, loratadine, lorazepam, lovastatin, loxapine, mazindol, mefenamic acid, meperidine, mephenytoin, mepivacaine, mesoridazine, metaproterenol, methadone, methdilazine, methocarbamol, methotrexate, methotrimeprazine, methoxamine, methyl-dopa, methylphenidate, metoclopramide, metolazone, metoprolol, metronidazole, midazolam, moclobemide, morphine, nadolol, nalbuphine, naloxone, naphazoline, naproxen, nifedipine, nizatidine, norepinephrine, nortriptyline, oxazepam, oxycodone, oxymetazo-line, paroxetine, pemoline, pentazocine, pentobarbital, pentoxifylline, perphenazine, pheniramine, phenobarbital, phenol, phenolphthalein, phentolamine, phenylbutazone, phenyltoloxamine, phenytoin, pimozide, pindolol, piroxicam, pramoxine, prazepam, prazosin, probenecid, procainamide, procaine, prochlorperazine, procyclidine, promazine, promethazine, propafenone, propantheline, propiomazine, propofol, propranolol, protriptyline, quazepam, quinidine, quinine, racemethorphan, ranitidine, remoxipride, risperidone, salicylic acid, scopolamine, secobarbital, sertraline, sotalol, spironolactone, sulfinpyrazone, sulindac, temazepam, terbutaline, terfenadine, tetracaine, theophylline, thiethyl-perazine, thiopental, thioridazine, thiothixene, timolol, tocainide, tolbutamide, tolmetin, trazodone, triamterene, triazolam, trifluoperazine, triflupromazine, trimeprazine, trimethoprim, trimipramine, verapamil, warfarin, xylometazoline, yohimbine, zopiclone... [Pg.53]


See other pages where Ranitidine Naproxen is mentioned: [Pg.293]    [Pg.1967]    [Pg.61]    [Pg.79]    [Pg.312]    [Pg.17]    [Pg.43]    [Pg.49]    [Pg.60]    [Pg.78]    [Pg.80]    [Pg.156]    [Pg.157]    [Pg.173]    [Pg.174]    [Pg.202]    [Pg.208]    [Pg.209]    [Pg.213]    [Pg.246]    [Pg.248]    [Pg.342]    [Pg.344]    [Pg.367]    [Pg.384]    [Pg.391]    [Pg.393]    [Pg.403]    [Pg.425]    [Pg.426]    [Pg.443]    [Pg.444]    [Pg.460]    [Pg.478]    [Pg.481]    [Pg.489]    [Pg.496]    [Pg.497]    [Pg.513]    [Pg.519]   
See also in sourсe #XX -- [ Pg.149 ]




SEARCH



Naproxen

Naproxene

Ranitidine

© 2024 chempedia.info