Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

NADPH transketolase

P, the seven-carbon sugar serving as the transketolase substrate. Likewise, phosphoribulose kinase carries out the unique plant function of providing RuBP from Ru-5-P (reaction 15). The net conversion accounts for the fixation of six equivalents of carbon dioxide into one hexose at the expense of 18 ATP and 12 NADPH. [Pg.735]

MORE NADPH THAN RmOSE-5-P IS NEEDED BY THE CELL Large amounts of N/VDPH can be supplied for biosynthesis without concomitant production of ribose-5-P, if ribose-5-P produced in the pentose phosphate pathway is recycled to produce glycolytic intermediates. As shown in Figure 23.39, this alternative involves a complex interplay between the transketolase and transaldolase reac-... [Pg.770]

TPP-dependent enzymes are involved in oxidative decarboxylation of a-keto acids, making them available for energy metabolism. Transketolase is involved in the formation of NADPH and pentose in the pentose phosphate pathway. This reaction is important for several other synthetic pathways. It is furthermore assumed that the above-mentioned enzymes are involved in the function of neurotransmitters and nerve conduction, though the exact mechanisms remain unclear. [Pg.1288]

Transketolase reactions leading via the pentose or hexose monophosphate shunt pathway of glucose oxidation to the eventual production of pentoses for RNA/DNA synthesis and NADPH for the biosynthesis of fatty acids... [Pg.408]

Two NADPH Molecules Are Generated by the Pentose Phosphate Pathway Transaldolase and Transketolase Catalyze the Interconversion of Many Phosphorylated Sugars Production of Ribose-5-phosphate and Xylulose-5-phosphate... [Pg.243]

NADPH, fructose 6-phosphate and glyceraldehyde 3-phosphate can be taken from glycolysis and converted into ribose 5-phosphate by reversal of the transketolase and transaldolase reactions. [Pg.301]

Transketolase is involved in the pentose phosphate pathway, which is the major pathway of carbohydrate metaholism in some tissues and a significant alternative to glycolysis in all tissues. The main importance of the pentose phosphate pathway is in the production of NADPH for use in hiosynthetic reactions (and especially lipogenesis) and the de novo synthesis of rihose for nucleotide synthesis. [Pg.159]

The preceding reactions yield two molecules of NADPH and one molecule of ribose 5-phosphate for each molecule of glucose 6-phosphate oxidized. However, many cells need NADPH for reductive biosyntheses much more than they need ribose 5-phosphate for incorporation into nucleotides and nucleic acids. In these cases, ribose 5-phosphate is converted into glyceraldehyde 3-phosphate and fructose 6-phosphate by transketolase and transaldolase. These enzymes create a reversible link between the pentose phosphate pathway and glycolysis by catalyzing these three successive reactions. [Pg.844]

Mode 1. Much more ribose 5-phosphate than NADPH is required. For example, rapidly dividing cells need ribose 5-phosphate for the synthesis of nucleotide precursors of DNA. Most of the glucose 6-phosphate is converted into fructose 6-phosphate and glyceraldehyde 3-phosphate by the glycolytic pathway. Transaldolase and transketolase then convert two molecules of fructose 6-phosphate and one molecule of glyceraldehyde 3-phosphate into three molecules of ribose 5-phosphate by a reversal of the reactions described earlier. The stoichiometry of mode 1 is... [Pg.850]

Thus, the equivalent of glucose 6-phosphate can be completely oxidized to CO 2 with the concomitant generation of NADPH. In essence, ribose 5-phosphate produced by the pentose phosphate pathway is recycled into glucose 6-phosphate by transketolase, transaldolase, and some of the enzymes of the gluconeogenic pathway. [Pg.851]

C. NADPH, 6-phosphogluconate dehydrogenase, transketolase, glucose-6-phosphate dehydrogenase, gluconolactone hydrolase... [Pg.330]

E. In the first three reactions of the pentose phosphate pathway, glucose is converted to ribulose 5-phosphate and C02, with the production of NADPH. These reactions are not reversible. Ribose 5-phosphate and xylulose 5-phosphate may be formed from ribulose 5-phos-phate. A series of reactions catalyzed by transketolase and transaldolase produce the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate. [Pg.182]

Figure 21 -8 Major glycolytic pathways of the erythrocyte. Substrates are in uppercase type, and enzymes are in parentheses. EMP, The Embden-Meyerhof pathway HMP hexose monophosphate pathway or pentose shunt RLC, the Rapoport-Luebering cycle ADP, adenosine diphosphate ATP, adenosine triphosphate NAD, nicotinamide-adenine dinudeotide NADH, reduced nicotinamide-adenine dinucleotide NADP, nicotinamide-adenine dinucleotide phosphate NADPH, reduced nicotinamide-adenine dinucleotide phosphate.The step from ribulose-5-phosphate, which is shown as being catalyzed by transketolase and transaldolase, is an abbreviation of this portion of the HMR... Figure 21 -8 Major glycolytic pathways of the erythrocyte. Substrates are in uppercase type, and enzymes are in parentheses. EMP, The Embden-Meyerhof pathway HMP hexose monophosphate pathway or pentose shunt RLC, the Rapoport-Luebering cycle ADP, adenosine diphosphate ATP, adenosine triphosphate NAD, nicotinamide-adenine dinudeotide NADH, reduced nicotinamide-adenine dinucleotide NADP, nicotinamide-adenine dinucleotide phosphate NADPH, reduced nicotinamide-adenine dinucleotide phosphate.The step from ribulose-5-phosphate, which is shown as being catalyzed by transketolase and transaldolase, is an abbreviation of this portion of the HMR...
Transketolase is a TPP-dependent enzyme found in the cytosol of many tissues, especially hver and blood cells, in which principal carbohydrate pathways exist. In the pentose phosphate pathway, which additionally supplies reduced nicotinamide-adenine dinucleotide phosphate (NADPH) necessary for biosynthetic reactions, this enzyme catalyzes the reversible transfer of a glycoaldehyde moiety from the first two carbons of a donor ketose phosphate to the aldehyde carbon of an aldose phosphate. [Pg.1091]

Ribose-5-P only Only the nonoxidative reactions. High NADPH Inhibits glucose- 6-P dehydrogenase, so transketolase and transaldolase will be used to convert fructose-6-P and glyceraldehyde-3-P to rlbose-5-P. [Pg.538]


See other pages where NADPH transketolase is mentioned: [Pg.170]    [Pg.12]    [Pg.541]    [Pg.552]    [Pg.554]    [Pg.145]    [Pg.298]    [Pg.300]    [Pg.479]    [Pg.141]    [Pg.20]    [Pg.159]    [Pg.159]    [Pg.1414]    [Pg.851]    [Pg.856]    [Pg.144]    [Pg.106]    [Pg.259]    [Pg.552]    [Pg.554]    [Pg.45]    [Pg.53]    [Pg.510]    [Pg.513]    [Pg.539]    [Pg.346]   
See also in sourсe #XX -- [ Pg.556 ]




SEARCH



Transketolase

© 2024 chempedia.info