Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monosaccharides hemiketal

In a similar manner, ketones can react with alcohols to form hemiketals. The analogous intramolecular reaction of a ketose sugar such as fructose yields a cyclic hemiketal (Figure 7.6). The five-membered ring thus formed is reminiscent of furan and is referred to as a furanose. The cyclic pyranose and fura-nose forms are the preferred structures for monosaccharides in aqueous solution. At equilibrium, the linear aldehyde or ketone structure is only a minor component of the mixture (generally much less than 1%). [Pg.214]

This is a modified form of the 1980 recommendations [4]. Priority is now given to naming cyclic forms, since in most cases branched-chain monosaccharides will form cyclic hemiacetals or hemiketals. [Pg.97]

If the branched monosaccharide forms a cyclic hemiacetal or hemiketal, the chain which includes the ring atoms rather than any alternative open chain must be the basis of the name. Otherwise the parent is chosen according to the principles given in 2-Carb-2.1. [Pg.98]

The aldehyde or ketone group of monosaccharides can undergo an intramolecular reaction with one of its own hydroxyl groups to form a cyclic, hemiacetal, or hemiketal structure, respectively (Figure 1.26). In aqueous solutions, this cyclic structure actually predominates. The open-chain aldehyde or ketone form of monosaccharides is in equilibrium with the cyclic form, but the open structure exists less than 0.5 percent of the time in aqueous environments. It is the... [Pg.37]

Monosaccharide structures may be depicted in open-chain forms showing their carbonyl character, or in cyclic hemiacetal or hemiketal forms. Alongside the Fischer projections of glucose, ribose, and fructose shown earlier, we included an alternative... [Pg.468]

The cyclic hemiacetal and hemiketal forms of monosaccharides are capable of reacting with an alcohol to form acetals and ketals (see Section 7.2). The acetal or ketal product is termed a glycoside, and the non-carbohydrate portion is referred to as an aglycone. In the nomenclature of glycosides we replace the suffix -ose in the sugar with -oside. Simple glycosides may be synthesized by treating an alcoholic solution of the monosaccharide with an acidic catalyst, but the reaction mixture usually then contains a mixture of products. This is an accepted problem with many carbohydrate reactions it is often difficult to carry out selective transformations because of their multifunctional nature. [Pg.474]

Monosaccharides commonly form internal hemiacetals or hemiketals, in which the aldehyde or ketone group joins with a hydroxyl group of the same molecule, creating a cyclic structure this can be represented as a Haworth perspective formula. The carbon atom originally found in the aldehyde or ketone group (the anomeric carbon) can assume either of two configurations, a and /3, which are interconvertible by mutarotation. In the linear form, which is in equilibrium with the cyclized forms, the anomeric carbon is easily oxidized. [Pg.247]

An extra chiral center is produced at the hemiacetal (or hemiketal) carbon (former carbonyl carbon). The hydroxyl group can be either below (a) or above ( 3) the plane of the ring structure. Monosaccharides that differ only in the configuration of the groups at the hemiacetal (hemiketal) carbon are known as anomers. The hemiacetal (hemiketal) carbon is known as the anomeric carbon (Fig. 122). [Pg.115]

When a monosaccharide forms a cyclic hemiacetal (or hemiketal), the carbonyl carbon becomes a stereocenter. Thus, cyclization leads to formation of two possible stereoisomers. These isomers are called anomers, and the former carbonyl carbon is called the anomeric carbon. The isomer with the anomeric OH (shown in blue) pointed down is the alpha anomer. The isomer with the anomeric OH (shown in blue) pointed up is the beta anomer. (Figure 12.14)... [Pg.321]

Monosaccharides Form Rings as a Consequence of Internal Hemiacetal or Hemiketal Formation. [Pg.166]

Monosaccharides, polyhydroxy aldehydes or ketones, are either aldoses or ketoses. Sugars that contain four or more carbons primarily have cyclic forms. Cyclic aldoses or ketoses are hemiacetals and hemiketals, respectively. [Pg.209]

Hemiacetals and hemiketals react with alcohols to form acetals and ketals, respectively. When the cyclic hemiacetal or hemiketal form of a monosaccharide reacts with an alcohol, the new linkage is called a glycosidic linkage, and the compound is called a glycoside. [Pg.234]

Hemiacetals and hemiketals are readily formed in carbohydrates. Monosaccharides contain several hydroxyl groups and one carbonyl group. The linear form of a monosaccharide quickly undergoes an intramolecular reaction in solution to give a cyclic hemiacetal or hemiketal. [Pg.410]

When the hemiacetal or hemiketal of one monosaccharide reacts with a hydroxyl group of another monosaccharide, the product is an acetal or a ketal. A sugar molecule made up of two monosaccharides is called a disaccharide. The C—O—-C bond between the two monosaccharides is called a glycosidic bond (Figure 14.7). [Pg.410]


See other pages where Monosaccharides hemiketal is mentioned: [Pg.164]    [Pg.214]    [Pg.214]    [Pg.216]    [Pg.221]    [Pg.59]    [Pg.38]    [Pg.59]    [Pg.471]    [Pg.306]    [Pg.48]    [Pg.115]    [Pg.320]    [Pg.11]    [Pg.395]    [Pg.164]    [Pg.172]    [Pg.72]    [Pg.11]    [Pg.54]    [Pg.140]    [Pg.143]    [Pg.213]    [Pg.234]    [Pg.417]    [Pg.504]    [Pg.504]    [Pg.514]    [Pg.242]    [Pg.936]    [Pg.939]    [Pg.454]   
See also in sourсe #XX -- [ Pg.270 ]




SEARCH



Hemiketal

Hemiketal groups, monosaccharide structure

Monosaccharides cyclic hemiacetals/hemiketals

© 2024 chempedia.info