Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomer concentrations, surfactants, binary

For the pseudo-binary mixture (a = 0.5) of sulfonate and nonylphenol with 30 E.O., figure 2 shows how the concentration of each of their monomer calculated by the RST theory (1), varies as a function of the overall surfactant concentration. It can be expected that the asymptotic regime in which monomer concentrations are stabilized will correspond to a plateau of the adsorption isotherm for the surfactant mixtures considered. [Pg.278]

In order to illustrate the eFFect oF micellar nonidealities oF mixing on total surFactant monomer concentrations and micelle compositions in a system at the CHC, consider a hypothetical binary surFactant pair, A and B. Assume CMCa = 1 mli and CMCb = 2 mil. For a equimolar mixture oF A and B as monomer, the values oF Cn and micelle compositions are tabulated in Table I at various values oF W/RT. [Pg.10]

Table 1. Total Monomer Concentrations and Micellar Compositions For a Binary SurFactant System at Various Deviations From Ideality... Table 1. Total Monomer Concentrations and Micellar Compositions For a Binary SurFactant System at Various Deviations From Ideality...
The mass action model (MAM) for binary ionic or nonionic surfactants and the pseudo-phase separation model (PSM) which were developed earlier (I EC Fundamentals 1983, 22, 230 J. Phys. Chem. 1984, 88, 1642) have been extended. The new models include a micelle aggregation number and counterion binding parameter which depend on the mixed micelle composition. Thus, the models can describe mixtures of ionic/nonionic surfactants more realistically. These models generally predict no azeotropic micellization. For the PSM, calculated mixed erne s and especially monomer concentrations can differ significantly from those of the previous models. The results are used to estimate the Redlich-Kister parameters of monomer mixing in the mixed micelles from data on mixed erne s of Lange and Beck (1973), Funasaki and Hada (1979), and others. [Pg.44]

As already discussed in Chapter 1, the relative tendency of a surfactant component to adsorb on a given surface or to form micelles can vary greatly with surfactant structure. The adsorption of each component could be measured below the CMC at various concentrations of each surfactant in a mixture. A matrix could be constructed to tabulate the (hopefully unique) monomer concentration of each component in the mixture corresponding to any combination of adsorption levels for the various components present. For example, for a binary system of surfactants A and B, when adsorption of A is 0.5 mmole/g and that of B is 0.3 mmole/g, there should be only one unique combination of monomer concentrations of surfactant A and of surfactant B which would result in this adsorption (e.g., 1 mM of A and 1.5 mM of B). Uell above the CMC, where most of the surfactant in solution is present as micelles, micellar composition is approximately equal to solution composition and is, therefore, known. If individual surfactant component adsorption is also measured here, it would allow computation of each surfactant monomer concentration (from the aforementioned matrix) in equilibrium with the mixed micelles. Other processes dependent on monomer concentration or surfactant component activities only could also be used in a similar fashion to determine monomer—micelle equilibrium. [Pg.326]

An amine oxide surfactant solution can be modeled as a binary mixture of cationic and nonionic surfactants, the composition of which is varied by adjusting the pH. The cationic and nonionic moieties form thermodynamically nonideal mixed micelles, and a model has been developed which quantitatively describes the variation of monomer and micelle compositions and concentrations with pH and... [Pg.123]

Ultrafiltration has been used to measure cmc, monomer composition, and micelle composition of binary surfactant mixtures [74,100,105]. Asakawa et al. [100] used the ultrafiltration method to study SPFO-SDS systems and LiFOS-alkyl sulfate mixtures as a function of surfactant concentration. The alkyl sulfates had different chain lengths of 10 (LiDeS), 12 (LiDS), or 14 (LiTS) car-... [Pg.304]


See other pages where Monomer concentrations, surfactants, binary is mentioned: [Pg.385]    [Pg.103]    [Pg.3765]    [Pg.199]    [Pg.132]    [Pg.205]    [Pg.239]    [Pg.146]    [Pg.402]    [Pg.132]   


SEARCH



Monomer concentration

Surfactant concentration

Surfactants concentrated

Surfactants monomers

© 2024 chempedia.info