Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monolithic columns internal structure

The secondary structure, the mesopores, is similar to the internal structure of standard HPLC particles. This secondary structure provides the surface for retention. The standard pore size is in the order of 13 nm, resulting in a specific surface area of about 300 mVg. Due to the lower ratio of retentive structure to interstitial space, the retentivity of monoliths and the preparative loadability tends to be significantly lower than the retentivity and loadability of packed beds of 10-nm particles. Since the monolithic columns described here are made from silica, they can be derivatized in the same way and with the same technology as silica-based particles. Also, the useful pH range is the same as for silica-based particles. [Pg.96]

Chemistry and material sciences are key disciplines for the development of advanced and more specific adsorbents. The stability and reproducibility of chromatographic columns was significantly increased by the introduction of spherical instead of irregular stationary phases. Recently, another step forward was made by the development of high efficiency monolithic columns with a rather low pressure drop. Future, further improvements, which include surface activation and internal pore structures of stationary phases, should help to tailor stationary phases for certain applications. But, besides the need for more specific and efficient solid phases, their cost is often a major problem for the widespread application of preparative chromatography. [Pg.417]

The second concept for catalytic column internals is the use of catalytically active structures instead of those filled with catalyst. Such structures are either carrier-supported catalysts or solid catalytic structures. Carrier supports can be coated with any kind of catalyst (e.g. GPP rings and some specific structured packing [39], KATAPAK-M [40]). Moreover, it is possible to develop solid catalytic structures without any carrier. The so-called BP-rings, for example, are produced by polymerization in an annular gap [39], whereas the monolithic structures are made by extrusion of catalytic material [41]. [Pg.326]

Reactors with a packed bed of catalyst are identical to those for gas-liquid reactions filled with inert packing. Trickle-bed reactors are probably the most commonly used reactors with a fixed bed of catalyst. A draft-tube reactor (loop reactor) can contain a catalytic packing (see Fig. 5.4-9) inside the central tube. Stmctured catalysts similar to structural packings in distillation and absorption columns or in static mixers, which are characterized by a low pressure drop, can also be inserted into the draft tube. Recently, a monolithic reactor (Fig. 5.4-11) has been developed, which is an alternative to the trickle-bed reactor. The monolith catalyst has the shape of a block with straight narrow channels on the walls of which catalytic species are deposited. The already extremely low pressure drop by friction is compensated by gravity forces. Consequently, the pressure in the gas phase is constant over the whole height of the reactor. If needed, the gas can be recirculated internally without the necessity of using an external pump. [Pg.266]

The promise of monolith is the achievement of a higher performance at a lower backpressure than a packed bed. While this is true in principle, current implementations are limited by the fact that the external wall to the structure is made from PEEK. At the time of this writing, the commercially available monoliths can only be used up to a pressure of 20MPa (200 atm, 3000 psi), while packed bed steel columns can be used up to double this pressure and higher. Also, the preparation of the monolith appears to be cumbersome. At the current time, the silica-based monoliths are available only with an internal diameter of 4.6mm. The speed is thus also limited by the flow rate achievable by the HPLC instrument. At the same time, the detector of choice today is the mass spectrometer, which can tolerate only much... [Pg.96]


See other pages where Monolithic columns internal structure is mentioned: [Pg.257]    [Pg.108]    [Pg.410]    [Pg.55]    [Pg.100]    [Pg.193]    [Pg.263]    [Pg.156]    [Pg.243]    [Pg.864]    [Pg.113]    [Pg.123]    [Pg.396]    [Pg.97]   
See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Column internal

Column internals

Internal structure

Monolith structure

Structured Internals

© 2024 chempedia.info