Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular unimolecular

STOICHIOMETRIC NUMBER Stoichiometry of elementary reactions, CHEMICAL KINETICS MOLECULARITY UNIMOLECULAR BIMOLECULAR TRANSITION-STATE THEORY ELEMENTARY REACTION STOKE S SHIFT... [Pg.782]

An elementary reaction is,a reaction that occurs in a single step. The stoichiometric coefficients of an elementary equation give the molecularity of the reaction. The mol-ecularity is the number of molecules colliding at one time to make a reaction. There are three possible molecularities unimolecular, bimolecular, and termolecular. Since the reaction above is elementary, its molecularity is given by a + b. Chemical equations often represent multistep reactions called complex or composite reactions. There is no way to distinguish an elementary reaction from a complex reaction by inspection of the chemical equation. On the MCAT, the only way to know if a reaction is elementary is if you are told that it is elementary. [Pg.30]

Give several examples of the distinction between the order and the molecularity (unimolecular, bimolecular, and so on) of reactions. [Pg.839]

Because an elementary reaction occurs on a molecular level exactly as it is written, its rate expression can be determined by inspection. A unimolecular reaction is a first-order process, bimolecular reactions are second-order, and termolecular processes are third-order. However, the converse statement is not true. Second-order rate expressions are not necessarily the result of an elementary bimolecular reaction. While a stoichiometric chemical equation remains valid when multiplied by an arbitrary factor, a mechanistic eqnation loses its meaning when multiplied by an arbitrary factor. Whereas stoichiometric coefficients and reaction orders may be integers or nonintegers, the molecularity of a reaction is always an integer. The following examples indicate the types of rate expressions associated with various molecularities. Unimolecular ... [Pg.73]

Indicate the molecularity (unimolecular or bimolecular) of each of the following steps. Give the rate for each step (the first process is shown as an example) ... [Pg.356]

Section 12.5 reaction mechanism intermediate elementary step molecularity unimolecular step bimolecular step termolecular step rate-determining step... [Pg.590]

The Langmuir-Hinshelwood picture is essentially that of Fig. XVIII-14. If the process is unimolecular, the species meanders around on the surface until it receives the activation energy to go over to product(s), which then desorb. If the process is bimolecular, two species diffuse around until a reactive encounter occurs. The reaction will be diffusion controlled if it occurs on every encounter (see Ref. 211) the theory of surface diffusional encounters has been treated (see Ref. 212) the subject may also be approached by means of Monte Carlo/molecular dynamics techniques [213]. In the case of activated bimolecular reactions, however, there will in general be many encounters before the reactive one, and the rate law for the surface reaction is generally written by analogy to the mass action law for solutions. That is, for a bimolecular process, the rate is taken to be proportional to the product of the two surface concentrations. It is interesting, however, that essentially the same rate law is obtained if the adsorption is strictly localized and species react only if they happen to adsorb on adjacent sites (note Ref. 214). (The apparent rate law, that is, the rate law in terms of gas pressures, depends on the form of the adsorption isotherm, as discussed in the next section.)... [Pg.722]

A situation that arises from the intramolecular dynamics of A and completely distinct from apparent non-RRKM behaviour is intrinsic non-RRKM behaviour [9], By this, it is meant that A has a non-random P(t) even if the internal vibrational states of A are prepared randomly. This situation arises when transitions between individual molecular vibrational/rotational states are slower than transitions leading to products. As a result, the vibrational states do not have equal dissociation probabilities. In tenns of classical phase space dynamics, slow transitions between the states occur when the reactant phase space is metrically decomposable [13,14] on the timescale of the imimolecular reaction and there is at least one bottleneck [9] in the molecular phase space other than the one defining the transition state. An intrinsic non-RRKM molecule decays non-exponentially with a time-dependent unimolecular rate constant or exponentially with a rate constant different from that of RRKM theory. [Pg.1011]

In the above discussion it was assumed that the barriers are low for transitions between the different confonnations of the fluxional molecule, as depicted in figure A3.12.5 and therefore the transitions occur on a timescale much shorter than the RRKM lifetime. This is the rapid IVR assumption of RRKM theory discussed in section A3.12.2. Accordingly, an initial microcanonical ensemble over all the confonnations decays exponentially. However, for some fluxional molecules, transitions between the different confonnations may be slower than the RRKM rate, giving rise to bottlenecks in the unimolecular dissociation [4, ]. The ensuing lifetime distribution, equation (A3.12.7), will be non-exponential, as is the case for intrinsic non-RRKM dynamics, for an mitial microcanonical ensemble of molecular states. [Pg.1024]

Flase W L 1976 Modern Theoretical Chemistry, Dynamics of Molecular Collisions part B, ed W H Miller (New York Plenum) p 121 Gilbert R G and Smith S C 1990 Theory of Unimolecular and Recombination Reactions koadoa Blackwell Scientific)... [Pg.1044]

Faraday Discuss. Chem.. Soc. 1986 Dynamics of molecular photofragmentation. No 82 Faraday Discuss. Chem. Soc. 1995 Unimolecular dynamics. No 112... [Pg.1093]

A) During the luultiphoton excitation of molecular vibrations witli IR lasers, many (typically 10-50) photons are absorbed in a quasi-resonant stepwise process until the absorbed energy is suflFicient to initiate a unimolecular reaction, dissociation, or isomerization, usually in the electronic ground state. [Pg.2131]

Figure B2.5.18 compares this inter molecular selectivity with intra molecular or mode selectivity. In an IR plus UV, two-photon process, it is possible to break either of the two bonds selectively in the same ITOD molecule. Depending on whether the OFI or the OD stretching vibration is excited, the products are either IT -t OD or FIO + D [24]- hr large molecules, mirmnolecular selectivity competes with fast miramolecular (i.e. unimolecular) vibrational energy redistribution (IVR) processes, which destroy the selectivity. In laser experiments with D-difluorobutane [82], it was estimated that, in spite of frequency selective excitation of the... Figure B2.5.18 compares this inter molecular selectivity with intra molecular or mode selectivity. In an IR plus UV, two-photon process, it is possible to break either of the two bonds selectively in the same ITOD molecule. Depending on whether the OFI or the OD stretching vibration is excited, the products are either IT -t OD or FIO + D [24]- hr large molecules, mirmnolecular selectivity competes with fast miramolecular (i.e. unimolecular) vibrational energy redistribution (IVR) processes, which destroy the selectivity. In laser experiments with D-difluorobutane [82], it was estimated that, in spite of frequency selective excitation of the...
An expression for the current across a molecular junction is developed by analogy with the description of unimolecular solution phase electron transfer. The conduction is written 1201... [Pg.2989]

Illustrate the stereochemistry associated with unimolecular nucleophilic substitution by con structmg molecular models of cis 4 tert butylcyclohexyl bromide its derived carbocation and the alcohols formed from it by hydrolysis under S l conditions... [Pg.362]

Detailed reaction dynamics not only require that reagents be simple but also that these remain isolated from random external perturbations. Theory can accommodate that condition easily. Experiments have used one of three strategies. (/) Molecules ia a gas at low pressure can be taken to be isolated for the short time between coUisions. Unimolecular reactions such as photodissociation or isomerization iaduced by photon absorption can sometimes be studied between coUisions. (2) Molecular beams can be produced so that motion is not random. Molecules have a nonzero velocity ia one direction and almost zero velocity ia perpendicular directions. Not only does this reduce coUisions, it also aUows bimolecular iateractions to be studied ia intersecting beams and iacreases the detail with which unimolecular processes that can be studied, because beams facUitate dozens of refined measurement techniques. (J) Means have been found to trap molecules, isolate them, and keep them motionless at a predetermined position ia space (11). Thus far, effort has been directed toward just manipulating the molecules, but the future is bright for exploiting the isolated molecules for kinetic and dynamic studies. [Pg.515]

By changing from the simplest to larger aliphatic and cyclic ketones, structural factors may be introduced which favor alternative unimolecular primary photoprocesses or provide pathways to products not available to the simple model compound. In addition, both the increase in molecular size and irradiation in solution facilitate rapid vibrational relaxation of the electronically excited reactant as well as the primary products to thermally equilibrated species. In this way the course of primary and secondary reactions will also become increasingly structure-selective. In a,a -unsym-metrically substituted ketones, the more substituted bond undergoes a-cleavage preferentially. [Pg.293]

From this expression, it is obvious that the rate is proportional to the concentration of A, and k is the proportionality constant, or rate constant, k has the units of (time) usually sec is a function of [A] to the first power, or, in the terminology of kinetics, v is first-order with respect to A. For an elementary reaction, the order for any reactant is given by its exponent in the rate equation. The number of molecules that must simultaneously interact is defined as the molecularity of the reaction. Thus, the simple elementary reaction of A P is a first-order reaction. Figure 14.4 portrays the course of a first-order reaction as a function of time. The rate of decay of a radioactive isotope, like or is a first-order reaction, as is an intramolecular rearrangement, such as A P. Both are unimolecular reactions (the molecularity equals 1). [Pg.432]

Most interest focuses on very fast reactions. This includes systems whose mean reaction times range from roughly 1 minute to 10 14 second. Reactions that involve bond making or breaking are not likely to occur in less than 10 13 second, since this is the scale of molecular vibrations. Some unimolecular electron transfer events may, however, occur more rapidly. [Pg.253]

The rate law of a reaction is an experimentally determined fact. From this fact we attempt to learn the molecularity, which may be defined as the number of molecules that come together to form the activated complex. It is obvious that if we know how many (and which) molecules take part in the activated complex, we know a good deal about the mechanism. The experimentally determined rate order is not necessarily the same as the molecularity. Any reaction, no matter how many steps are involved, has only one rate law, but each step of the mechanism has its own molecularity. For reactions that take place in one step (reactions without an intermediate) the order is the same as the molecularity. A first-order, one-step reaction is always unimolecular a one-step reaction that is second order in A always involves two molecules of A if it is first order in A and in B, then a molecule of A reacts with one of B, and so on. For reactions that take place in more than one step, the order/or each step is the same as the molecularity for that step. This fact enables us to predict the rate law for any proposed mechanism, though the calculations may get lengthy at times." If any one step of a mechanism is considerably slower than all the others (this is usually the case), the rate of the overall reaction is essentially the same as that of the slow step, which is consequently called the rate-determining step. ... [Pg.291]

A mechanism is a description of the actual molecular events that occur during a chemical reaction. Each such event is an elementary reaction. Elementary reactions involve one, two, or occasionally three reactant molecules or atoms. In other words, elementary reactions can be unimolecular, bimolecular, or termolecular. A typical mechanism consists of a sequence of elementary reactions. Although an overall reaction describes the starting materials and final products, it usually is not elementary because it does not represent the individual steps by which the reaction occurs. [Pg.1049]

In a termolecular reaction, three chemical species collide simultaneously. Termolecular reactions are rare because they require a collision of three species at the same time and in exactly the right orientation to form products. The odds against such a simultaneous three-body collision are high. Instead, processes involving three species usually occur in two-step sequences. In the first step, two molecules collide and form a collision complex. In a second step, a third molecule collides with the complex before it breaks apart. Most chemical reactions, including all those introduced in this book, can be described at the molecular level as sequences of bimolecular and unimolecular elementary reactions. [Pg.1050]

To obtain a molecular perspective of reaction rates, consider the unimolecular reaction shown in Figure 15-3. At elevated temperature, the compound ds-2-butene can rearrange to form its isomer, trans-2-butene. The reaction occurs after collisions transfer enough energy to a ds-2-butene molecule to break the C — C jrbond. Once the bond breaks, rotation around the C — C a bond takes place rapidly until a jrbond forms again. [Pg.1054]


See other pages where Molecular unimolecular is mentioned: [Pg.123]    [Pg.363]    [Pg.123]    [Pg.123]    [Pg.331]    [Pg.134]    [Pg.123]    [Pg.351]    [Pg.334]    [Pg.123]    [Pg.363]    [Pg.123]    [Pg.123]    [Pg.331]    [Pg.134]    [Pg.123]    [Pg.351]    [Pg.334]    [Pg.54]    [Pg.783]    [Pg.1019]    [Pg.1024]    [Pg.1025]    [Pg.1028]    [Pg.2116]    [Pg.2997]    [Pg.3013]    [Pg.767]    [Pg.101]    [Pg.220]    [Pg.210]    [Pg.44]    [Pg.311]    [Pg.668]    [Pg.958]    [Pg.235]   


SEARCH



© 2024 chempedia.info