Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular structure VSEPR model

The Lewis structures encountered in Chapter 2 are two-dimensional representations of the links between atoms—their connectivity—and except in the simplest cases do not depict the arrangement of atoms in space. The valence-shell electron-pair repulsion model (VSEPR model) extends Lewis s theory of bonding to account for molecular shapes by adding rules that account for bond angles. The model starts from the idea that because electrons repel one another, the shapes of simple molecules correspond to arrangements in which pairs of bonding electrons lie as far apart as possible. Specifically ... [Pg.220]

STRATEGY For the electron arrangement, draw the Fewis structure and then use the VSEPR model to decide how the bonding pairs and lone pairs are arranged around the central (nitrogen) atom (consult Fig. 3.2 if necessary). Identify the molecular shape from the layout of atoms, as in Fig. 3.1. [Pg.223]

The cu-bonding model provides a more complete and fundamental description of hypervalent molecules that are often interpreted in terms of the VSEPR model.144 In the present section we examine some MX species that are commonly used to illustrate VSEPR principles, comparing and contrasting the VSEPR mnemonic with general Bent s rule, hybridization, and donor-acceptor concepts for rationalizing molecular geometry. Tables 3.32 and 3.33 summarize geometrical and NBO/NRT descriptors for a variety of normal-valent and hypervalent second-row fluorides to be discussed below, and Fig. 3.87 shows optimized structures of the hypervalent MF species (M = P, S, Cl n = 3-6). [Pg.293]

The most widely used qualitative model for the explanation of the shapes of molecules is the Valence Shell Electron Pair Repulsion (VSEPR) model of Gillespie and Nyholm (25). The orbital correlation diagrams of Walsh (26) are also used for simple systems for which the qualitative form of the MOs may be deduced from symmetry considerations. Attempts have been made to prove that these two approaches are equivalent (27). But this is impossible since Walsh s Rules refer explicitly to (and only have meaning within) the MO model while the VSEPR method does not refer to (is not confined by) any explicitly-stated model of molecular electronic structure. Thus, any proof that the two approaches are equivalent can only prove, at best, that the two are equivalent at the MO level i.e. that Walsh s Rules are contained in the VSEPR model. Of course, the transformation to localised orbitals of an MO determinant provides a convenient picture of VSEPR rules but the VSEPR method itself depends not on the independent-particle model but on the possibility of separating the total electronic structure of a molecule into more or less autonomous electron pairs which interact as separate entities (28). The localised MO description is merely the simplest such separation the general case is our Eq. (6)... [Pg.78]

In this chapter a few simple rules for predicting molecular structures will be investigated. We shall examine first the valence shell electron pair repulsion (VSEPR) model, and then a purely molecular orbital treatment. [Pg.650]

Like so many other molecular properties, shape is determined by the electronic structure of the bonded atoms. The approximate shape of a molecule can often be predicted by using what is called the valence-shell electron-pair repulsion (VSEPR) model. Electrons in bonds and in lone pairs can be thought of as "charge clouds" that repel one another and stay as far apart as possible, thus causing molecules to assume specific shapes. There are only two steps to remember in applying the VSEPR method ... [Pg.264]

The electron-dot structures described in Sections 7.6 and 7.7 provide a simple way to predict the distribution of valence electrons in a molecule, and the VSEPR model discussed in Section 7.9 provides a simple way to predict molecular shapes. Neither model, however, says anything about the detailed electronic nature of covalent bonds. To describe bonding, a quantum mechanical model called valence bond theory has been developed. [Pg.271]

Now we are ready to start the derivation of the intermediate scheme bridging quantum and classical descriptions of molecular PES. The basic idea underlying the whole derivation is that the experimental fact that the numerous MM models of molecular PES and the VSEPR model of stereochemistry are that successful, as reported in the literature, must have a theoretical explanation [21], The only way to obtain such an explanation is to perform a derivation departing from a certain form of the trial wave function of electrons in a molecule. QM methods employing the trial wave function of the self consistent field (or equivalently Hartree-Fock-Roothaan) approximation can hardly be used to base such a derivation upon, as these methods result in an inherently delocalized and therefore nontransferable description of the molecular electronic structure in terms of canonical MOs. Subsequent a posteriori localization... [Pg.208]

Of the 20th century s development of structural chemistry, we mention the discovery of the electron-pair covalent bond by Lewis [22] which remains a fundamental tenet. It is remembered in every line we have drawn to represent a linkage and is present in most models of molecular structure, such as, for example, the valence shell electron pair repulsion (VSEPR) model [23]. [Pg.40]

The VSEPR model is an extraordinarily powerful one, considering its great simplicity. Its application to predicting molecular structures can be summarized as follows ... [Pg.36]

The VSEPR model works at its best in rationalizing ground state stereochemistry but does not attempt to indicate a more precise electron distribution. The molecular orbital theory based on 3s and 3p orbitals only is also compatible with a relative weakening of the axial bonds. Use of a simple Hiickel MO model, which considers only CT orbitals in the valence shell and totally neglects explicit electron repulsions can be invoked to interpret the same experimental results. It was demonstrated that the electron-rich three-center bonding model could explain the trends observed in five-coordinate speciesVarious MO models of electronic structure have been proposed to predict the shapes and other properties of non-transition element... [Pg.117]

Recall that the fundamental idea of the VSEPR model is to find the arrangement of electron pairs around the central atom that minimizes the electron repulsions. Then we can determine the molecular structure from knowing how the electron pairs are shared with the peripheral atoms. [Pg.629]

The molecular structure of nitrate also illustrates one more important point When a molecule exhibits resonance, any one of the resonance structures can be used to predict the molecular structure using the VSEPR model. These rules are illustrated in Example 13.14. [Pg.639]

The following rules are helpful in using the VSEPR model to predict molecular structure. [Pg.640]

The VSEPR model is very simple. There are only a few rules to remember, yet the model correctly predicts the molecular structures of most molecules formed from nonmetallic elements. Molecules of any size can be treated by applying the VSEPR model to each appropriate atom (those bonded to at least two other atoms) in the molecule. Thus we can use this model to predict the structures of molecules with hundreds of atoms. It does, however, fail in a few instances. For example, phosphine (PH5), which has a Lewis structure analogous to that of ammonia,... [Pg.640]

Recall that the LE model views a molecule as a collection of atoms bound together by sharing electrons between atomic orbitals. The arrangement of valence electrons is represented by the Lewis structure (or structures, where resonance occurs), and the approximate molecular geometry can be predicted using the VSEPR model. In this section we will describe what types of atomic orbitals are used by this model to share the electrons and hence to form the bonds. [Pg.650]


See other pages where Molecular structure VSEPR model is mentioned: [Pg.158]    [Pg.281]    [Pg.296]    [Pg.225]    [Pg.80]    [Pg.220]    [Pg.66]    [Pg.80]    [Pg.115]    [Pg.120]    [Pg.121]    [Pg.655]    [Pg.248]    [Pg.183]    [Pg.308]    [Pg.151]    [Pg.1234]    [Pg.1252]    [Pg.4304]    [Pg.627]    [Pg.627]    [Pg.627]    [Pg.631]    [Pg.633]    [Pg.635]    [Pg.637]    [Pg.639]    [Pg.905]    [Pg.97]    [Pg.33]    [Pg.115]    [Pg.120]   
See also in sourсe #XX -- [ Pg.627 , Pg.628 , Pg.629 , Pg.630 , Pg.631 , Pg.632 , Pg.633 , Pg.634 , Pg.635 , Pg.636 , Pg.637 , Pg.638 , Pg.639 , Pg.640 , Pg.679 ]

See also in sourсe #XX -- [ Pg.389 , Pg.390 , Pg.391 , Pg.392 , Pg.393 , Pg.394 , Pg.395 , Pg.396 , Pg.397 , Pg.398 , Pg.399 , Pg.400 , Pg.401 ]




SEARCH



Molecular structure VSEPR

Molecular structure, model

Structure VSEPR

Structure molecular modeling

VSEPR

VSEPR model

© 2024 chempedia.info