Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular shapes VSEPR model

The electron-dot structures described in Sections 7.6 and 7.7 provide a simple way to predict the distribution of valence electrons in a molecule, and the VSEPR model discussed in Section 7.9 provides a simple way to predict molecular shapes. Neither model, however, says anything about the detailed electronic nature of covalent bonds. To describe bonding, a quantum mechanical model called valence bond theory has been developed. [Pg.271]

The Lewis structures encountered in Chapter 2 are two-dimensional representations of the links between atoms—their connectivity—and except in the simplest cases do not depict the arrangement of atoms in space. The valence-shell electron-pair repulsion model (VSEPR model) extends Lewis s theory of bonding to account for molecular shapes by adding rules that account for bond angles. The model starts from the idea that because electrons repel one another, the shapes of simple molecules correspond to arrangements in which pairs of bonding electrons lie as far apart as possible. Specifically ... [Pg.220]

STRATEGY For the electron arrangement, draw the Fewis structure and then use the VSEPR model to decide how the bonding pairs and lone pairs are arranged around the central (nitrogen) atom (consult Fig. 3.2 if necessary). Identify the molecular shape from the layout of atoms, as in Fig. 3.1. [Pg.223]

Having introduced methane and the tetrahedron, we now begin a systematic coverage of the VSEPR model and molecular shapes. The valence shell electron pair repulsion model assumes that electron-electron repulsion determines the arrangement of valence electrons around each inner atom. This is accomplished by positioning electron pairs as far apart as possible. Figure 9-12 shows the optimal arrangements for two electron pairs (linear),... [Pg.607]

Tetrahedral geometry may be the most common shape in chemistry, but several other shapes also occur frequently. This section applies the VSEPR model to four additional electron group geometries and their associated molecular shapes. [Pg.618]

The carbon atom in CO2 has two groups of electrons. Recall from our definition of a group that a double bond counts as one group of four electrons. Although each double bond includes four electrons, all four are concentrated between the nuclei. Remember also that the VSEPR model applies to electron groups, not specifically to electron pairs (despite the name of the model). It is the number of ligands and lone pairs, not the number of shared eiectrons, that determines the steric number and hence the molecular shape of an inner atom. [Pg.619]

The most widely used qualitative model for the explanation of the shapes of molecules is the Valence Shell Electron Pair Repulsion (VSEPR) model of Gillespie and Nyholm (25). The orbital correlation diagrams of Walsh (26) are also used for simple systems for which the qualitative form of the MOs may be deduced from symmetry considerations. Attempts have been made to prove that these two approaches are equivalent (27). But this is impossible since Walsh s Rules refer explicitly to (and only have meaning within) the MO model while the VSEPR method does not refer to (is not confined by) any explicitly-stated model of molecular electronic structure. Thus, any proof that the two approaches are equivalent can only prove, at best, that the two are equivalent at the MO level i.e. that Walsh s Rules are contained in the VSEPR model. Of course, the transformation to localised orbitals of an MO determinant provides a convenient picture of VSEPR rules but the VSEPR method itself depends not on the independent-particle model but on the possibility of separating the total electronic structure of a molecule into more or less autonomous electron pairs which interact as separate entities (28). The localised MO description is merely the simplest such separation the general case is our Eq. (6)... [Pg.78]

Like so many other molecular properties, shape is determined by the electronic structure of the bonded atoms. The approximate shape of a molecule can often be predicted by using what is called the valence-shell electron-pair repulsion (VSEPR) model. Electrons in bonds and in lone pairs can be thought of as "charge clouds" that repel one another and stay as far apart as possible, thus causing molecules to assume specific shapes. There are only two steps to remember in applying the VSEPR method ... [Pg.264]

Molecular shape can often be predicted by the valence-shell electron-pair repulsion (VSEPR) model, which treats... [Pg.287]

First, use the VSEPR model described in Section 7.9 to predict the molecular shape of vinyl chloride. Then, assign polarities to the individual bonds according to the differences in electronegativity of the bonded atoms (Figure 7.4), and make a reasonable guess about the overall polarity that would result by summing the individual contributions. [Pg.384]

The VSEPR approach is largely restricted to Main Group species (as is Lewis theory). It can be applied to compounds of the transition elements where the nd subshell is either empty or filled, but a partly-filled nd subshell exerts an influence on stereochemistry which can often be interpreted satisfactorily by means of crystal field theory. Even in Main Group chemistry, VSEPR is by no means infallible. It remains, however, the simplest means of rationalising molecular shapes. In the absence of experimental data, it makes a reasonably reliable prediction of molecular geometry, an essential preliminary to a detailed description of bonding within a more elaborate, quantum-mechanical model such as valence bond or molecular orbital theory. [Pg.12]

The VSEPR model works at its best in rationalizing ground state stereochemistry but does not attempt to indicate a more precise electron distribution. The molecular orbital theory based on 3s and 3p orbitals only is also compatible with a relative weakening of the axial bonds. Use of a simple Hiickel MO model, which considers only CT orbitals in the valence shell and totally neglects explicit electron repulsions can be invoked to interpret the same experimental results. It was demonstrated that the electron-rich three-center bonding model could explain the trends observed in five-coordinate speciesVarious MO models of electronic structure have been proposed to predict the shapes and other properties of non-transition element... [Pg.117]

Once a Lewis structure is drawn, you can determine the molecular geometry, or shape, of the molecule. The model used to determine the molecular shape is referred to as the Valence Shell Electron Pair Repulsion model, or VSEPR model. This model is based on an arrangement that minimizes the repulsion of shared and unshared pairs of electrons around the central atom. [Pg.259]

Concept Mapping Design a concept map that will link both the VSEPR model and the hybridization theory to molecular shape. [Pg.274]

For a discussion of the shapes of alkyl complexes related to the VSEPR model of molecular geometry, see G. S. McGrady and A. J. Downs, Coord. Chem. Rev., 2000,197, 95. [Pg.139]

The VSEPR model generates reliable predictions of the geometries of a variety of molecular structures. Chemists use the VSEPR approach because of its simphcity. Although there are some theoretical concerns about whether electron-pair repulsion actually determines molecular shapes, the assumption that it does leads to useful (and generally reliable) predictions. We need not ask more of any model at this stage in the study of chemistry. [Pg.376]

MO theory heteronuclear diatomic molecules Isoelectronic molecules Molecular shape and the VSEPR model Geometrical isomerism... [Pg.1]


See other pages where Molecular shapes VSEPR model is mentioned: [Pg.662]    [Pg.111]    [Pg.37]    [Pg.220]    [Pg.80]    [Pg.248]    [Pg.263]    [Pg.263]    [Pg.265]    [Pg.267]    [Pg.269]    [Pg.270]    [Pg.207]    [Pg.261]    [Pg.264]    [Pg.151]    [Pg.1252]    [Pg.97]    [Pg.57]    [Pg.73]    [Pg.11]    [Pg.307]    [Pg.56]    [Pg.328]    [Pg.280]    [Pg.111]    [Pg.47]    [Pg.83]    [Pg.43]    [Pg.43]   
See also in sourсe #XX -- [ Pg.143 , Pg.144 , Pg.145 , Pg.146 , Pg.147 , Pg.148 , Pg.149 , Pg.150 ]




SEARCH



Modeling Molecular Shapes

Molecular shape

Molecular shape VSEPR)

Molecular shape and the VSEPR model

Molecular shape modelling

Shape model

VSEPR

VSEPR model

© 2024 chempedia.info