Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Model chemistry ionic

The solute-solvent interaction in equation A2.4.19 is a measure of the solvation energy of the solute species at infinite dilution. The basic model for ionic hydration is shown in figure A2.4.3 [5] there is an iimer hydration sheath of water molecules whose orientation is essentially detemiined entirely by the field due to the central ion. The number of water molecules in this iimer sheath depends on the size and chemistry of the central ion ... [Pg.566]

The model for ionic retention and ion-pair chromatography that are discussed in Sections 15.2 and 15.3 has been tested and applied to a number of different systems and works very well in most of the cases. From colloid and surface chemistry is known that the model has its limitations, and under certain chromatographic conditions, the presented model will not be valid. The limitations of the model when applied to reversed-phase chromatography of ions still need to be found. Some are self-evident, such as if the pairing-ion concentration is close or above the CMC or when the retention factor is very low so that the accumulation in the double layer is important in comparison to the adsorption, see Ref. [7] for a discussion concerning the accumulation in the double layer. [Pg.432]

Alloys Borates Solid-state Chemistry Carbides Transition Metal Solid-state Chemistry Chalcogenides Solid-state Chemistry Diffraction Methods in Inorganic Chemistry Electronic Structure of Solids Fluorides Solid-state Chemistry Halides Solid-state Chemistry Intercalation Chemistry Ionic Conductors Magnetic Oxides Magnetism of Extended Arrays in Inorganic Solids Nitrides Transition Metal Solid-state Chemistry Noncrystalline Solids Oxide Catalysts in Solid-state Chemistry Oxides Solid-state Chemistry Quasicrystals Semiconductor Interfaces Solids Characterization by Powder Diffraction Solids Computer Modeling Superconductivity Surfaces. [Pg.1091]

Bending Models In Inorgunie Chemistrys Ionic Compownils... [Pg.60]

Bonding Models in Inorganic Chemistry ). Ionic Compounds... [Pg.62]

Pickard, F.C., Dunn, M.E., Shields, G.C. Comparison of model chemistry and density functional theory thermochemical predictions with experiment for formation of ionic clusters of the ammonium cation complexed with water and ammonia atmospheric implications. J. Phys. Chem. A 2005,109(22), 4905-10. [Pg.137]

There is some suggestion that these common alternative conceptions may survive university teaching, for example, among New Zealand chemistry graduates (see Coll Treagust, 2001). In the U.K., Oversby (1996) found that some of his post-graduate trainee chemistry teachers considered the alternative conceptions of the ionic bond reported by Taber (1994) to be an acceptable model of ionic bonding, i.e. ... [Pg.221]

About the turn of the century cuid shortly thereafter, certain developments in mathematical physics and in physical chemistry were realized which were to prove important in the theory of mass and charge transport in solids, later. Einsteinand Smoluchowski( ) initiated the modern theory of Brownian motion by idealizing it as a problem in random flights. Then some seventeen years or so later, Joffee A proposed that interstitial defects could form inside the lattice of ionic crystals and play a role in electrical conductivity. The first tenable model for ionic conductivity was proposed by Frenkel, who recognized that vaccin-cies and interstitials could form internally to account for ion movement. [Pg.96]

It is of special interest for many applications to consider adsorption of fiuids in matrices in the framework of models which include electrostatic forces. These systems are relevant, for example, to colloidal chemistry. On the other hand, electrodes made of specially treated carbon particles and impregnated by electrolyte solutions are very promising devices for practical applications. Only a few attempts have been undertaken to solve models with electrostatic forces, those have been restricted, moreover, to ionic fiuids with Coulomb interactions. We would hke to mention in advance that it is clear, at present, how to obtain the structural properties of ionic fiuids adsorbed in disordered charged matrices. Other systems with higher-order multipole interactions have not been studied so far. Thermodynamics of these systems, and, in particular, peculiarities of phase transitions, is the issue which is practically unsolved, in spite of its great importance. This part of our chapter is based on recent works from our laboratory [37,38]. [Pg.337]

In an attempt to study the behavior and chemistry of coal in ionic liquids, 1,2-diphenylethane was chosen as a model compound and its reaction in acidic pyri-dinium chloroaluminate(III) melts ([PyHjCl/AlCb was investigated [69]. At 40 °C, 1,2-diphenylethane undergoes a series of alkylation and dealkylation reactions to give a mixture of products. Some of the products are shown in Scheme 5.1-40. Newman also investigated the reactions of 1,2-diphenylethane with acylating agents such as acetyl chloride or acetic anhydride in the pyridinium ionic liquid [70] and with alcohols such as isopropanol [71]. [Pg.193]

Arrhenius success in science must be credited not only to his brilliance as a scientist but also to his conviction in his views. His understanding of the electrical properties of aqueous solutions nus so far ahead of contemporary thought that it would have been ignored but for his confidence in the usefulness of his theory and his refusal to abandon it. It is fitting tribute that the ionic model of aqueous solutions has changed permanently the face of inorganic chemistry. [Pg.198]

By tradition, electrochemistry has been considered a branch of physical chemistry devoted to macroscopic models and theories. We measure macroscopic currents, electrodic potentials, consumed charges, conductivities, admittance, etc. All of these take place on a macroscopic scale and are the result of multiple molecular, atomic, or ionic events taking place at the electrode/electrolyte interface. Great efforts are being made by electrochemists to show that in a century where the most brilliant star of physical chemistry has been quantum chemistry, electrodes can be studied at an atomic level and elemental electron transfers measured.1 The problem is that elemental electrochemical steps and their kinetics and structural consequences cannot be extrapolated to macroscopic and industrial events without including the structure of the surface electrode. [Pg.308]

Wiebke Btxrckmeier studied Chemistry and English for secondary education in Oldenburg from 2002 to 2007. In 2007, she finished her examination with a thesis on children s ideas about models of metals and ionic stractmes. Recently, Wiebke Brockmeier completed her teacher s training in Celle. [Pg.351]

Robinson, E.A., Johnson, S.A., Tang, T.-H., Gillespie, R.J. (1997). Reinterpretation of the lengths of bonds to fluorine in terms of an almost ionic model. Inorganic Chemistry, 36, 3022-3030. Schinder, H.L. Becke, A.D. (2000). Chemical contents of the kinetic energy density. Journal of Molecular Structure (THEOCHEM), 527, 51-61. [Pg.298]

Over the last several years, the number of studies on application of artificial neural network for solving modeling problems in analytical chemistry and especially in optical fibre chemical sensor technology, has increase substantially69. The constructed sensors (e.g. the optical fibre pH sensor based on bromophenol blue immobilized in silica sol-gel film) are evaluated with respect to prediction of error of the artificial neural network, reproducibility, repeatability, photostability, response time and effect of ionic strength of the buffer solution on the sensor response. [Pg.368]

The above results appear to indicate that the chemistry of zero-valent model carbene systems does not adequately reflect the behavior of conventional active metathesis catalysts having intermediate oxidation states and bearing ionic ligands. [Pg.464]

Fig. 24.8. Evolution of fluid chemistry during the simulated evaporation of seawater as an equilibrium system at 25 °C, calculated using the Harvie-Mpller-Weare activity model. Upper figures show variation in salinity, water activity (aw), and ionic strength (/) over the reaction path in Figure 24.7 bottom figure shows how the fluid s bulk composition varies. Fig. 24.8. Evolution of fluid chemistry during the simulated evaporation of seawater as an equilibrium system at 25 °C, calculated using the Harvie-Mpller-Weare activity model. Upper figures show variation in salinity, water activity (aw), and ionic strength (/) over the reaction path in Figure 24.7 bottom figure shows how the fluid s bulk composition varies.

See other pages where Model chemistry ionic is mentioned: [Pg.230]    [Pg.55]    [Pg.258]    [Pg.210]    [Pg.231]    [Pg.116]    [Pg.1960]    [Pg.2222]    [Pg.35]    [Pg.67]    [Pg.80]    [Pg.347]    [Pg.455]    [Pg.239]    [Pg.215]    [Pg.156]    [Pg.158]    [Pg.169]    [Pg.234]    [Pg.216]    [Pg.253]    [Pg.416]    [Pg.92]    [Pg.42]    [Pg.97]    [Pg.8]    [Pg.364]    [Pg.268]    [Pg.66]    [Pg.511]   
See also in sourсe #XX -- [ Pg.45 ]




SEARCH



Bonding Models in Inorganic Chemistry 1. Ionic Compounds

Ionic model

Ionic modeling

Model chemistry

Modelling chemistry

© 2024 chempedia.info