Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mirror-imaging molecular

Strategy To decide if a structure represents a meso compound, try to locate a plane of symmetry that divides the molecule into two halves that are mirror images. Molecular models are always helpful. [Pg.192]

A molecule is chiral if it cannot be superimposed on its mirror image (or if it does not possess an alternating axis of symmetry) and would exhibit optical activity, i.e. lead to the rotation of the plane of polarization of polarized light. Lactic acid, which has the structure (2 mirror images) shown exhibits molecular chirality. In this the central carbon atom is said to be chiral but strictly it is the environment which is chiral. [Pg.91]

In certain crystals, e.g. in quartz, there is chirality in the crystal structure. Molecular chirality is possible in compounds which have no chiral carbon atoms and yet possess non-superimposable mirror image structures. Restricted rotation about the C=C = C bonds in an allene abC = C = Cba causes chirality and the existence of two optically active forms (i)... [Pg.91]

Compounds in which one or more carbon atoms have four nonidentical substituents are the largest class of chiral molecules. Carbon atoms with four nonidentical ligands are referred to as asymmetric carbon atoms because the molecular environment at such a carbon atom possesses no element of symmetry. Asymmetric carbons are a specific example of a stereogenic center. A stereogenic center is any structural feature that gives rise to chirality in a molecule. 2-Butanol is an example of a chiral molecule and exists as two nonsuperimposable mirror images. Carbon-2 is a stereogenic center. [Pg.78]

Many substances exhibit the property of isomerism they occur in two or more molecular forms that have the same composition but differ from each other in structure and in their properties. One type of isomerism, known as optical isomerism, is exhibited by molecules that have the same constituent atoms but are arranged in different spatial distributions, where one of the optical isomers is a mirror image of the other (see Textbox 63). [Pg.363]

One of the fundamental concepts of structural chemistry is that of molecular asymmetry or chirality. The most typical example is that of a tetrahedral carbon atom with four different substituents, C(abcd), which can produce two different arrangements, which are nonsuperimposable mirror images of one another. Such a carbon atom is usually called asymmetric or chiral. In contrast, when two of the substituents are alike, as in C(abc2), the system is usually termed symmetrical or achiral, except for a special class of compounds... [Pg.193]

The second issue is how to explain the observation of both left- and right-handed helices in the phosphonate material. While Thomas et al. found both helical senses in the early stages of formation of DCggPC tubules, they found both helical senses even in the equilibrium state of the phosphonate. In the previous section, we attributed their results on tubule formation kinetics to a biased chiral symmetry-breaking in which the molecular packing has two possible states which are approximately mirror images of each other. The... [Pg.329]

There are two reasons to think this situation might occur. The first reason is experimental. As discussed in Sections 2-5, in most experiments on chiral materials, tubules and helical ribbons are observed with only one sense of handedness. However, there are a few exceptions in experiments on diacetylenic phospholipids,144 diacetylenic phosphonate lipids,145 146 and bile.162 In these exceptional cases, some helices are observed with the opposite sense of handedness from the majority. In the work on diacetylenic phospholipids, the minority handedness was observed only during the kinetic process of tubule formation at high lipid concentration,144 which is a condition that should promote metastable states. Hence, these experiments may indeed show a case of biased chiral symmetry-breaking in which the molecular chirality favors a state of one handedness and disfavors a mirror image state. [Pg.361]

Since the walls between heterochiral domains are unacceptable defects in an LC display, enantiomericafly enriched dopants are added to the LC to favor one sign of twist over the other in actual devices, providing a monodomain in the TN cell. It should be noted, however, that the chirality of the structure derives from the interaction of the LC director with the surfaces the molecular chirality serving simply to break the degeneracy between mirror image domains to favor one over the other. [Pg.477]

Pasteur thus made the important deduction that the rotation of polarized light caused by different tartaric acid salt crystals was the property of chiral molecules. The (+)- and ( )-tartaric acids were thought to be related as an object to its mirror image in three dimensions. These tartaric acid salts were dissymmetric and enantiomorphous at the molecular level. It was this dissymmetry that provided the power to rotate the polarized light. [Pg.3]

The inactivity in the molecule is due to the fact that it is perfectly symmetric as shown by the dotted line, the upper half exactly coinciding with the lower half. Therefore, molecular asymmetry and not the presence of asymmetric carbon atoms is responsible for optical activity. Since the term asymmetric has been found to be inadequate, now the term chirality has been introduced. The word chiral (the Greek word cheir means hand pronounced kiral) signifies, the property of Handedness . An object that in not superimposable upon its mirror image is chiral and this mirror-image relationship is the same as left hand has with the right. If an object and its mirror image can be made to coincide in space, they are said to be achiral. [Pg.123]


See other pages where Mirror-imaging molecular is mentioned: [Pg.161]    [Pg.138]    [Pg.52]    [Pg.46]    [Pg.161]    [Pg.138]    [Pg.52]    [Pg.46]    [Pg.171]    [Pg.77]    [Pg.282]    [Pg.1278]    [Pg.189]    [Pg.190]    [Pg.366]    [Pg.237]    [Pg.430]    [Pg.282]    [Pg.290]    [Pg.2]    [Pg.363]    [Pg.5]    [Pg.12]    [Pg.14]    [Pg.21]    [Pg.243]    [Pg.370]    [Pg.375]    [Pg.239]    [Pg.326]    [Pg.352]    [Pg.359]    [Pg.378]    [Pg.510]    [Pg.506]    [Pg.4]    [Pg.44]    [Pg.109]    [Pg.46]    [Pg.25]    [Pg.176]    [Pg.199]    [Pg.220]   


SEARCH



Imaging mirror

Mirror images

Mirrored

Mirroring

Mirrors

Molecular images

Molecular imaging

© 2024 chempedia.info