Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Minerals, bonding complexes

Reaction of the bis(salicylidenimine)palladium(II) complexes with mineral acids yields N-bonded complexes tranr-[PdX2(LH)2] (X = Cl, Br, I, SCN LH = HOC6H4CHNPh).243... [Pg.1118]

Boron s chemistry is so different from that of the other elements in this group that it deserves separate discussion. Chemically, boron is a nonmetal in its tendency to form covalent bonds, it shares more similarities with carbon and silicon than with aluminum and the other Group 13 elements. Like carbon, boron forms many hydrides like silicon, it forms oxygen-containing minerals with complex structures (borates). Compounds of boron have been used since ancient times in the preparation of glazes and borosilicate glasses, but the element itself has proven extremely difficult to purify. The pure element has a wide diversity of allotropes (different forms of the pure element), many of which are based on the icosahedral Bj2 unit. [Pg.256]

Mineral or particle surfaces are enriched with As due to several processes that are collectively referred to as sorption (Parks, 1990), but the chemical properties of surface-associated As have been difficult to study directly. Outer-sphere, or physisorption, describes weak, long range, attractive forces between the surface and sorbing As inner-sphere, or chemisorption, refers to the formation of chemical bonds between the surface and adsorbing As. Stronger adsorption is expected by the formation of a bidentate (two bond) adsorbed complex rather than a monodentate (1 bond) complex. Selective chemical extraction methods have been useful for empirical determination of the dominant chemical/mineralogical compartments retaining As in aquifer... [Pg.28]

This includes reactions of the polymer groups with metallic sites on the particle surface that may result in the formation of stable or insoluble compounds through covalent, ionic or coordination bonding. Carboxyl flocculants such as polyacrylic acid and carboxyl-methyl cellulose can chemisorb on the surface of calcite and sphalerite which have calcium or zinc sites on them. Certain flocculants, such as cellulose and starch with xanthate and polyacrylamide with dithiocarbamate with high chemically active groups, have been found to exhibit selective reaction with sulfide minerals. Such complexing polymers have been investigated for their use in selective flocculation processes. [Pg.187]

It is for this reason that hydrogen-bonded complexes and coacervates are formed mainly in the pH range 1-4, and especially 1.5-3.0. Also, this explains why this t>7< of attachment does not occur with the surface of colloidal aluminosilicates such zs clays and zeolites. These materials combine with nonlonic polar organic molecules, including proteins, only if the aluminum has been extracted first from the silica surface by a strong acid, or if the mineral surface is coated with a film of relatively pure silica. [Pg.298]

Most of the minerals that constitute rocks and soil are silicates, which usually also contain aluminum. Many of these minerals have complex formulas, corresponding to the complex condensed silicic acids from which they are derived. These minerals can be divided into three principal classes the framework minerals, with three-dimensional covalent bonding (hard minerals similar in their properties to quartz), the layer minerals, with two-dimensional bonding (such as mica), and the fibrous minerals, with one-dimensional bonding (such as asbestos). [Pg.610]

Codeposition of silver vapor with perfluoroalkyl iodides at -196 °C provides an alternative route to nonsolvated primary perfluoroalkylsilvers [272] Phosphine complexes of trifluaromethylsilver are formed from the reaction of trimethyl-phosphme, silver acetate, and bis(trifluoromethyl)cadmium glyme [755] The per-fluoroalkylsilver compounds react with halogens [270], carbon dioxide [274], allyl halides [270, 274], mineral acids and water [275], and nitrosyl chloride [276] to give the expected products Oxidation with dioxygen gives ketones [270] or acyl halides [270] Sulfur reacts via insertion of sulfur into the carbon-silver bond [270] (equation 188)... [Pg.716]

The structural complexity of borate minerals (p. 205) is surpassed only by that of silicate minerals (p. 347). Even more complex are the structures of the metal borides and the various allotropic modifications of boron itself. These factors, together with the unique structural and bonding problems of the boron hydrides, dictate that boron should be treated in a separate chapter. [Pg.139]

The formation of the complex is expected to decrease the free energy of activation for the homolysis of the peroxide bond, and the decomposition of TBHP would occur at a lower temperature. It was further observed that at a higher concentration of mineral acid, the decomposition of TBHP occurs via an ionic pathway, as reported by Turner [27]. [Pg.484]

B-C bonds, 3, 97 B-N bonds, 3, 97 B-O bonds, 3,94 B-P bonds, 3, 97 B-Si bonds, 3, 97 oxo acid anion complexes, 3, 96 Borates, alkoxo-, 3, 94 Borates, amidotrihydro-, 3,92 Borates, aryloxo-, 3, 94 Borates, carboxylato-, 3,96 Borates, catechol, 3,95 Borates, chlorosulfato-, 3,97 Borates, dicarboxylato-, 3,96 Borates, dipyrazol-l-yl-, 3, 92 Borates, halogeno-, 3,92 Borates, halogenohydro-, 3,90 Borates, hydro-, 3,90 Borates, hydrohydroxo-, 3,90 Borates, hydropyrazol-l-yl-, 3, 92 Borates, hydroxo-, 3,94 Borates, hydroxycarboxylato-, 3,96 Borates, inositol, 3, 95 Borates, monoalkyl-, 3, 92 Borates, monophosphido-, 3, 92 Borates, peroxohydroxo-, 3, 94 Borates, polyol, 3, 95 Borates, pyrrol-l-yl-, 3, 92 Borates, sulfato-, 3, 97 Borates, tetrabromo-, 3, 92 Borates, tetrachloro-, 3, 92 Borates, tetrafluoro-, 3, 92 minerals, 6, 847 Borates, tetrahalogeno-mixed, 3, 93 nB NMR, 3, 92 Borates, tetraiodo-, 3, 92 Borates, tetranitrato-, 3, 96 Borates, tetraperchlorato-, 3, 97 Borates, tripyrazol-l-yl-, 3, 92 Borax, 3,101 Borazines... [Pg.94]

In this chapter, we survey the diversity of transition metals, beginning with an overview. Then we describe the stmcture and bonding in transition metal complexes. We describe metallurgy, the processes by which pure metals are extracted from mineral ores. The chapter ends with a presentation of some properties of transition metals and their biological roles. [Pg.1429]


See other pages where Minerals, bonding complexes is mentioned: [Pg.64]    [Pg.366]    [Pg.19]    [Pg.133]    [Pg.247]    [Pg.344]    [Pg.366]    [Pg.44]    [Pg.198]    [Pg.15]    [Pg.43]    [Pg.5991]    [Pg.212]    [Pg.129]    [Pg.64]    [Pg.3]    [Pg.121]    [Pg.117]    [Pg.165]    [Pg.226]    [Pg.960]    [Pg.15]    [Pg.303]    [Pg.306]    [Pg.622]    [Pg.163]    [Pg.1035]    [Pg.180]    [Pg.786]    [Pg.309]    [Pg.64]    [Pg.12]    [Pg.147]    [Pg.311]    [Pg.147]    [Pg.448]    [Pg.456]    [Pg.240]   
See also in sourсe #XX -- [ Pg.404 , Pg.405 , Pg.406 , Pg.407 , Pg.408 , Pg.409 , Pg.410 , Pg.411 ]




SEARCH



Minerals, bonding

© 2024 chempedia.info