Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nebulizer micro-ultrasonic

To accommodate smaller liquid flows of about 10 pl/min, micro-ultrasonic nebulizers have been designed. Although basically similar in operation to standard ultrasonic nebulizers, in these micro varieties, the end of a very-small-diameter capillary, through which is pumped the sample solution, is in contact with the surface of the transducer. This arrangement produces a thin stream of solution that runs down and across the center of the face of the transducer. The stream of sample... [Pg.148]

In this paper, an accurate method for determining the concentration of manganese and other metals in gasoline and diesel fuel by ICP without the use of chilled spray chamber, direct injection nebulizer, ultrasonic nebulizer with micro-porous membrane desolvator, thermostated condenser, or emulsification is discussed. [Pg.17]

ICP-OES has the advantage of multi-elemental detection capability and offers a wide linear dynamic range. However, the introduction of organic solvents, such as fuels cause plasma destabilization or even plasma extinction and the use of ICP accessories may be necessary, such as direct injection nebulizer, ultrasonic nebulizer with micro-porous membrane... [Pg.130]

Duyck et al (2002) determined Ag, Al, Ba, Cd, Co, Cu, Fe, La, Mg, Mo and Mn in residual fuel oil and crude oils by ICP-MS after dilution of the samples in toluene, using ultrasonic nebulization. Good accuracy was reported for the determinations of the metals. Wondimu et al (2000) analysed residual fuel oil for Ag, Al, As, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe and Hg by ICP-MS after micro-wave acid decomposition. H2O2 was used after acid decomposition for better carbon removal. Lord (1991) determined Li, Al, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ag, Cd, Sn, Sb, Ba and Pb in crude oils by ICP-MS with mciro-emulsion sample introduction. Kowalewska et al (2005) determined Cu in crude oils and crude oil distillation products by ICP-MS after ashing and micro-wave assisted decomposition of analyte and transferred to aqueous solution. Good recovery of Cu was reported. Kelly et al (2003) determined Hg in crude oils and refined products by cold Vapor ICP-MS after decomposition of the sample by closed system combustion. Botto (2002) analysed crude oil, petroleum naphthas and tars for Na, P, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Y, Mo, Cd, Sn, Sb,... [Pg.131]

The specific design of the various sample introduction devices or spray probes depends to a large extent on the technique applied, i.e., ESI, APCI, or other. With respect to ESI, systems have been described for conventional pure ESI, pneumatically-assisted ESI or ionspray, ultrasonically-assisted ESI, thermally-assisted ESI, and micro- and nano-ESI (Ch. 5.5). The heated-nebulizer system (Ch. 5.6.2) is used in APCI and atmospheric-pressure photoionization (APPI). [Pg.113]


See other pages where Nebulizer micro-ultrasonic is mentioned: [Pg.424]    [Pg.474]    [Pg.424]    [Pg.63]    [Pg.1656]    [Pg.17]    [Pg.22]   
See also in sourсe #XX -- [ Pg.148 ]




SEARCH



Nebulization

Nebulization ultrasonic nebulizers

Nebulization, ultrasonic

Nebulizations

Nebulizations ultrasonic

Nebulizer

Nebulizer ultrasonic

© 2024 chempedia.info