Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micellar reactions kinetic modeling

General Mechanisms of Micellar Catalysis Kinetic Models for M i ce 11 e-Catalyzed Reactions... [Pg.203]

Reversibly fonned micelles have long been of interest as models for enzymes, since tliey provide an amphipatliic environment attractive to many substrates. Substrate binding (non-covalent), saturation kinetics and competitive inliibition are kinetic factors common to botli enzyme reaction mechanism analysis and micellar binding kinetics. [Pg.2593]

Catalysis, enzymatic, physical organic model systems and the problem of, 11,1 Catalysis, general base and nucleophilic, of ester hydrolysis and related reactions, 5,237 Catalysis, micellar, in organic reactions kinetic and mechanistic implications, 8,271 Catalysis, phase-transfer by quaternary ammonium salts, 15,267 Catalytic antibodies, 31,249... [Pg.336]

Micellar catalysis in organic reactions kinetic and mechanistic implications, 8, 271 Micelles, aqueous, and similar assemblies, organic reactivity in, 22, 213 Micelles, membranes and other aqueous aggregates, catalysis by, as models of enzyme action, 17, 435... [Pg.358]

The catalytic activities of Cu(II), Co(II) and Mn(II) are considerably enhanced by sodium dodecyl sulfate (SDS) in the autoxidation of H2DTBC (51). The maximum catalytic activity was found in the CMC region. It was assumed that the micelles incorporate the catalysts and the short metal-metal distances increase the activity in accordance with the kinetic model discussed above. The concentration of the micelles increases at higher SDS concentrations. Thus, the concentrations of the catalyst and the substrate decrease in the micellar region and, as a consequence, the catalytic reaction becomes slower again. [Pg.418]

Despite the abovementioned difficulties, kinetic models reproducing typical micellar kinetics have found widespread use and typically reproduce micellar reactivity well. Whereas these models are described here in terms of micellar kinetics, they can equally be adopted for the analysis of most vesicular rate effects, as long as bilayer permeation is either slow or fast compared to the rate of reaction. The issue of bilayer permeation-dependent rates of reaction has been addressed in detail by Moss et and will not be discussed here. A brief overview of the basic kinetic... [Pg.11]

Piskiewicz [119] has developed a kinetic model of micellar catalysis, based on the Hill equation of enzyme kinetics, which assumes a cooperative interaction between reactants and surfactant to form reactive substrate-micelle complexes. This model is probably not applicable to systems in which the surfactant is in large excess over substrate, as in most micellar mediated reactions, but it gives a very reasonable explanation of the rate effects of very dilute surfactants. [Pg.488]


See other pages where Micellar reactions kinetic modeling is mentioned: [Pg.644]    [Pg.131]    [Pg.317]    [Pg.240]    [Pg.11]    [Pg.67]    [Pg.272]    [Pg.359]    [Pg.240]    [Pg.258]   
See also in sourсe #XX -- [ Pg.829 ]




SEARCH



Micellar kinetic model

Micellar kinetics

Micellar reactions

© 2024 chempedia.info