Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methylcobalamin Adenosylcobalamin-dependent

Interaction with Adenosylcobalamin. It has been considered generally that adenosylcobalamin or its analogs binds to the apoprotein of diol dehydrase or other adenosylcobalamin-dependent enzymes almost irreversibly (4). However, we found that the holo-enzyme of diol dehydrase was resolved completely into intact apoen-zyme and adenosylcobalamin when subjected to gel filtration on a Sephadex G-25 column in the absence of K+ (9, 10). Among the inactive complexes of diol dehydrase with irreversible cobalamin inhibitors, those with cyanocobalamin and methylcobalamin also were resolved upon gel filtration on Sephadex G-25 in the absence of both K+ and substrate, yielding the apoenzyme, which was reconstitutable into the active holoenzyme (II). The enzyme-hydroxocobalamin complex, however, was not resolvable under the same conditions. The enzyme-cobalamin complexes were not resolved at all by gel filtration in the presence of both K+ and substrate. When gel filtration of the holoenzyme was carried out in the presence of K+ only, the holoen-... [Pg.149]

Although numerous enzymatic reactions requiring vitamin B12 have been described, and 10 reactions for adenosylcobalamin alone have been identified, only three pathways in man have so far been recognized, one of which has only recently been identified (PI). Two of these require the vitamin in the adenosyl form and the other in the methyl form. These cobalamin coenzymes are formed by a complex reaction sequence which results in the formation of a covalent carbon-cobalt bond between the cobalt nucleus of the vitamin and the methyl or 5 -deoxy-5 -adenosyl ligand, with resulting coenzyme specificity. Adenosylcobalamin is required in the conversion of methylmalonate to succinate (Fig. 2), while methylcobalamin is required by a B12-dependent methionine synthetase that enables the methyl group to be transferred from 5-methyltetrahydrofolate to homocysteine to form methionine (Fig. 3). [Pg.166]

Methylcobalamin is completely different from adenosylcobalamin because it is essentially a conduit for synthetic reactions catalyzed by methyltransferases, illustrated in Scheme 2 for the case of methionine. These reactions depend on the supemucle-ophilicity of cob(I)alamin. In one case, this species removes a methyl group from A -methyltetrahydrofolate with the formation of methylcobalamin, and then transfers this group to the acceptor homocysteine, which results in the synthesis of methionine (see Scheme 2). [Pg.65]

Cobalamins are essential enzymatic cofactors in human biochemistry. Coba-lamins chemical structure is based on the tetrapyrrole ring, while the chemical properties of the Co bond located in the centre of their moiety have been the focus of extensive research. Cyanocobalamin, the most known form of cobalamins, is rarely found in nature. Methylcobalamin and adenosylcobalamin are the two active forms of cobalamins in vivo in humans. Weakening of the Co C bond and its homolytic or heterolytic cleavage have been uncovered as an essential mechanism in the biochemical role of cobalamins as cofactors in humans. Recent studies using modem computational methods and application of quantum chemistry models have widened our knowledge of cobalamins biochemistry and are expected to contribute to our further understanding of cobalamin-dependent enzymes. [Pg.200]

Another reaction that depends on adenosylcobalamin is the reduction of ribonucleoside triphosphates to the corresponding 2 -deoxy compounds, the building blocks of deoxyribonucleic acids. Methylcobalamin is formed, e. g., in the methyl-ation of homocysteine to methionine with N -... [Pg.416]


See other pages where Methylcobalamin Adenosylcobalamin-dependent is mentioned: [Pg.264]    [Pg.303]    [Pg.538]    [Pg.678]    [Pg.523]    [Pg.113]    [Pg.310]    [Pg.310]    [Pg.64]    [Pg.310]    [Pg.918]    [Pg.506]    [Pg.187]    [Pg.751]    [Pg.207]    [Pg.517]    [Pg.442]   


SEARCH



Adenosylcobalamine

Methylcobalamin

Methylcobalamine

© 2024 chempedia.info