Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl shift isomerization

In this part, we will summarize some of our results on the investigation of the toluene intramolecular isomerization pathways." " Both cluster approach and periodic approach methods have been employed which allow giving an illustration of the consequence of the simplistic model in the cluster approach. H-Mordenite (H-MOR) zeolite is used for the periodic calculations. The toluene molecule does not have a problem to fit within the large 12-membered ring channels of this zeolite. Furthermore, the intramolecular transition states do not suffer from steric constraints. It is known that intramolecular aromatics isomerization can proceed via two different reaction pathways (see Figure 7). The first route proceeds through a methyl shift isomerization, whereas the second route involves a dealkylation or disproportionation reaction which results in the formation of a methoxy species and benzene as intermediate. [Pg.11]

Figure 12. Front view of the alternative geometry of the methyl shift isomerization transition state as obtained from the periodic structure calculations. ... Figure 12. Front view of the alternative geometry of the methyl shift isomerization transition state as obtained from the periodic structure calculations. ...
We will use now the same method and Mordenite zeolite model as in the previous part, and investigate the isomerization of xylene isomers. As described in the previous part, this reaction can proceed via two alternative routes, viz. a methyl shift isomerization, and disproportionation reactions. Moreover, we observed than in the case of toluene isomerization, the location of toluene with respect to the Br0nsted acidic site for the shift isomerization was of no consequence for the activation energy barrier. We will check these mechanisms for the three xylenes. [Pg.17]

Let us now consider the methyl shift isomerizations that lead from para-xylene to meta-xylene (see Figure 15). [Pg.18]

In the case of the ortho to me/a-xylene methyl shift isomerization transition states, the steric constraints are less important as the nonparticipating methyl group has more available space because of the ellipsoidal shape of the 12-membered ring channel (see Figure 15). Then, the activation energies are + 168 kJ/mol, and + 184 kJ/mol for the transition state which follows immediately the xylene protonation, and for the transition state which occurs after xylene overcame a rotation energy barrier to change its orientation with respect to the Brpnsted site respectively. [Pg.19]

The rearrangement of the intermediate alkyl cation by hydrogen or methyl shift and the cyclization to a cyclopropane by a CH-insertion has been studied by deuterium labelling [298]. The electrolysis of cyclopropylacetic acid, allylacetic acid or cyclo-butanecarboxylic acid leads to mixtures of cyclopropylcarbinyl-, cyclobutyl- and butenylacetamides [299]. The results are interpreted in terms of a rapid isomerization of the carbocation as long as it is adsorbed at the electrode, whilst isomerization is inhibited by desorption, which is followed by fast solvolysis. [Pg.125]

When -butenes are used, the initiation produces a secondary carbenium ion/butoxide. This species may isomerize via a methyl shift (Reaction (2)) or accept a hydride from isobutane to form the tertiary butyl cation (Reaction (3)). Isobutylene forms the tertiary cation directly. [Pg.260]

Butene as the feed alkene would thus—after hydride transfer—give 2,2,3-TMP as the primary product. However, with nearly all the examined acids, this isomer has been observed only in very small amounts. Usually the main components of the TMP-fraction are 2,3,3-, 2,3,4-, and 2,2,4-TMP, with the selectivity depending on the catalyst and reaction conditions. Consequently, a fast isomerization of the primary TMP-cation has to occur. Isomerization through hydride- and methyl-shifts is a facile reaction. Although the equilibrium composition is not reached, long residence times favor these rearrangements (47). The isomerization pathways for the TMP isomers are shown schematically in Fig. 3. [Pg.262]

The correlation between selectivity and intracrystalline free space can be readily accounted for in terms of the mechanisms of the reactions involved. The acid-catalyzed xylene isomerization occurs via 1,2-methyl shifts in protonated xylenes (Figure 3). A mechanism via two transalkylation steps as proposed for synthetic faujasite (8) can be ruled out in view of the strictly consecutive nature of the isomerization sequence o m p and the low activity for disproportionation. Disproportionation involves a large diphenylmethane-type intermediate (Figure 4). It is suggested that this intermediate can form readily in the large intracrystalline cavity (diameter. 1.3 nm) of faujasite, but is sterically inhibited in the smaller pores of mordenite and ZSM-4 (d -0.8 nm) and especially of ZSM-5 (d -0.6 nm). Thus, transition state selectivity rather than shape selective diffusion are responsible for the high xylene isomerization selectivity of ZSM-5. [Pg.276]

Several reaction pathways for the cracking reaction are discussed in the literature. The commonly accepted mechanisms involve carbocations as intermediates. Reactions probably occur in catalytic cracking are visualized in Figure 4.14 [17,18], In a first step, carbocations are formed by interaction with acid sites in the zeolite. Carbenium ions may form by interaction of a paraffin molecule with a Lewis acid site abstracting a hydride ion from the alkane molecule (1), while carbo-nium ions form by direct protonation of paraffin molecules on Bronsted acid sites (2). A carbonium ion then either may eliminate a H2 molecule (3) or it cracks, releases a short-chain alkane and remains as a carbenium ion (4). The carbenium ion then gets either deprotonated and released as an olefin (5,9) or it isomerizes via a hydride (6) or methyl shift (7) to form more stable isomers. A hydride transfer from a second alkane molecule may then result in a branched alkane chain (8). The... [Pg.111]

Pines and Csicsery (90, 90a) proposed three and/or four-membered cyclic intermediates in the isomerization of various branched alkanes over non-acidic chromia-alumina. A similar, 1,3-methyl shift has recently been reported with an oxygenated reactant (tetramethyloxetane) over supported Pt, Pd, and Rh (90b). Future experiments are necessary to elucidate whether hydrocarbons, too, can form C4 cyclic intermediates over metal catalysts. Some products assumedly formed via ethyl shift could be interpreted by C4 cyclic isomerization. [Pg.298]

Skeletal ring contraction steps of primary C7 and Cg rings are more probable than bicyclic intermediates (132b). Aromatization of methylcyclo-pentane indicated no carbonium mechanism with a nonacidic catalyst. Instead, Pines and Chen (132b) proposed a mechanism similar to that defined later as bond shift. This is a methyl shift. Two additional isomerization pathways characteristic of chromia have also been demonstrated vinyl shift (94) and isomerization via C3 and C4 cyclic intermediates (90a). These were discussed in Section III. 1,1-Dimethylcyclohexane and 4,4-dimethyl-cyclohexene gave mainly toluene over various chromia catalysts. Thus, both skeletal isomerization and demethylation activities of chromia have been verified. The presence of an acidic almnina support enhances isomerization dual function effects are thus also possible. [Pg.317]

Xylene Isomerization There are several mechanisms by which the three xylene isomers can be interconverted. The one that is of the greatest interest with respect to industrial applications is the so-called monomolecular or direct xylene isomerization route. This reaction is most commonly catalyzed by Bronsted acid sites in zeolitic catalysts. It is believed to occur as a result of individual protonation and methyl shift steps. [Pg.491]

Although the mechanism of the platinum catalysis is by no means completely understood, chemists do know a lot about how it works. It is an example of a dual catalyst platinum metal on an alumina support. Platinum, a transition metal, is one of many metals known for its hydrogenation and dehydrogenation catalytic effects. Recently bimetallic platinum/rhenium catalysts are now the industry standard because they are more stable and have higher activity than platinum alone. Alumina is a good Lewis acid and as such easily isomerizes one carbocation to another through methyl shifts. [Pg.111]

Isomerization of 2,2,4,4-tetramethyloxetane on platinum, palladium and rhodium catalysts at 100 °C to 4,4-dimethyl-2-pentanone has been observed (equation 69). A mechanism involving noble metal cleavage of C—O and a 1,3-methyl shift has been proposed (79CC139). [Pg.389]

The intramolecular nature of most carbocationic isomerization was proved by means of labeling experiments. [l-13C]-Propane was isomerized in the presence of aluminum bromide promoted by hydrogen bromide to form [2-13C]-propane. None of the propane product contained more than one l3C atom per molecule.64 Similarly, very little label scrambling was observed in the isomerization of labeled hexanes over SbF5-intercalated graphite.65 Thus simple consecutive 1,2-methyl shifts can account for the isomerization of l3C-labeled methylpentanes (Scheme 4.3). [Pg.169]

Several mechanisms were proposed to interpret bond shift isomerization, each associated with some unique feature of the reacting alkane or the metal. Palladium, for example, is unreactive in the isomerization of neopentane, whereas neopentane readily undergoes isomerization on platinum and iridium. Kinetic studies also revealed that the activation energy for chain branching and the reverse process is higher than that of methyl shift and isomerization of neopentane. [Pg.182]

Studies with sulfated zirconia promoted with Pt309 and industrial chlorinated Pt on AI2O3 isomerization catalysts310 led to the same conclusion, namely, the intermolecular mechanism operative for M-butane isomerization. A significant difference, however, is that on the industrial catalysts extensive hydride and methyl shifts taking place in the intermediates prior to P scission do not lead to a random distribution of the labels. Instead, a binomial distribution with one and three 13C atoms is observed.310 This is indicative of the involvement of the 31 carbocationic intermediate. [Pg.195]

The carbocation then rearranges by a methyl shift, and the rearranged cyclohexadienyl cation loses a proton to form the isomeric product... [Pg.311]

The 74 adsorbed hydrocarbon species can be interconverted via isomerization steps. We have included 71 representative isomerization steps to allow interconversion between the various C isomers. We categorize each of these steps as a nonbranching rearrangement (involving hydrogen and methyl shifts) or a branching rearrangement ... [Pg.237]

Further isomerization of m-xylene as well as transalkylation of trimethylbenzene and toluene to form m-xylene can occur. Evidence for the bimolecular transalkylation mechanism was provided by observation of a peak at m/e 109 in the mass spectra for CD3 substitution of toluene. These data rule out unimolecular 1,2-methyl shifts as the sole means of formation of xylenes. The higher the A1 content of the ultrastable faujasite the greater the extent of bimolecular transalkylation. These observations have significant implications for unimolecular kinetic models that have been proposed as well as reported activation energies and turnover frequencies. [Pg.16]

It is conceivable that, similarly to hydride shift polymerizations, methyl (or alkyl) migrations could also result in isomerization polymerizations. Edwards and Chamberlain studied the polymerization of 3,3-dimethylbutene-1 and 4,4-dimethylpentene-l and found evidence for methyl shift polymerization with the latter (163). They were unable to polymerize the former compound and this was attributed to severe steric hindrance associated with conventional 1,2 polymerization. However, 3,3-dimethylbutene-l can be polymerized by metal alkyl complex catalyst to high melting products (170) and it has been polymerized cationically (171). [Pg.535]

The C8 carbenium ions formed may isomerize via hydride transfer and methyl shifts to form more stable carbenium ions ... [Pg.44]

Fig.9.3 Mechanisms of xylene isomerization- a Intramolecular mechanism (1,2 methyl shifts) b Intermolecular mechanism via disproportionation and transalkylation steps... Fig.9.3 Mechanisms of xylene isomerization- a Intramolecular mechanism (1,2 methyl shifts) b Intermolecular mechanism via disproportionation and transalkylation steps...
The phenoxy species is released from the cluster with no activation energy barrier to overcome but a constant increase in energy to a Wheland complex from which shift isomerization transition state takes place. With respect to physisorbed toluene, the activation energy to achieve this transition state is act = + 282 kJ/mol. In the transition state, the shifting methyl group occupies an intermediate position between the aromatic ring carbon atom it was connected to, and the carbon atom it will connect to. The shift methyl... [Pg.12]


See other pages where Methyl shift isomerization is mentioned: [Pg.42]    [Pg.16]    [Pg.19]    [Pg.23]    [Pg.42]    [Pg.16]    [Pg.19]    [Pg.23]    [Pg.68]    [Pg.143]    [Pg.263]    [Pg.113]    [Pg.163]    [Pg.173]    [Pg.197]    [Pg.881]    [Pg.1285]    [Pg.532]    [Pg.231]    [Pg.233]    [Pg.422]    [Pg.167]    [Pg.245]    [Pg.48]    [Pg.263]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Isomerization shift

Shift, 1,2-methyl

© 2024 chempedia.info