Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl methacrylate , ATRP

ARGET ATRP has been successfully applied for polymerization of methyl methacrylate, ft-butyl acrylate and styrene in the presence of Sn(EH)2 (10 mol% vs. alkyl halide initiator or 0.07 mol% vs. monomer) [164,165]. For all monomers, polymerizations were well controlled using between 10 and 50 ppm of copper complexes with highly active TPMA and Me6TREN ligands. ARGET ATRP has also been utilized in the synthesis of block copolymers (poly(n-butyl acrylate)— -polystyrene and polystyrene-Z -poly(n-butyl acrylate) [164,165] and grafting... [Pg.245]

ATRP of Methyl Methacrylate in the Presence of an Amphiphilic, Polymeric Macroligand... [Pg.291]

Poly(methyl methacrylate) with a variable degree of polymerization anchored to silica surfaces was synthesized following the room temperature ATRP polymerization scheme described earlier [45,46]. In the main part of Fig. 25 we plot the variation of the PMMA brush thickness after drying (measured by SE) as a function of the position on the substrate. Thickness increases continuously from one end of the substrate to the other. Since the density of polymerization initiators is (estimated to be 0.5 chains/nm ) uniform on the substrate, we ascribe the observed change in thickness to different lengths of polymer chains grown at various positions. [Pg.88]

During the last 5 years, there have been several reports of multiblock copolymer brushes by the grafting-from method. The most common substrates are gold and silicon oxide layers but there have been reports of diblock brush formation on clay surfaces [37] and silicon-hydride surfaces [38]. Most of the newer reports have utilized ATRP [34,38-43] but there have been a couple of reports that utilized anionic polymerization [44, 45]. Zhao and co-workers [21,22] have used a combination of ATRP and nitroxide-mediated polymerization to prepare mixed poly(methyl methacrylate) (PMMA)Zpolystyrene (PS) brushes from a difunctional initiator. These Y-shaped brushes could be considered block copolymers that are surface immobilized at the block junction. [Pg.130]

Ruthenium(II)-NHC systems ean be used for atom transfer radical polymerization (ATRP). Generally, similar results as for the analogous phosphine complexes are obtained. For the ATRP of styrene and methyl methacrylate (MMA) [(NHC)2peBr2] was found to rival copper(I)-based systems and to yield poly (MMA) with low polydispersities. Polymerizations based on olefin metathesis that are catalyzed by ruthenium-NHC complexes are discussed separately vide supra). [Pg.50]

Automated parallel experiments were carried out to rapidly screen and optimize the reaction conditions for ATRP of methyl methacrylate (MMA) [34]. A set of 108 different reactions was designed for this purpose. Different initiators and different metal salts have been used, namely ethyl-2-bromo-tTo-butyrate (EBIB), methyl bromo propionate (MBP), (1-bromo ethyl) benzene (BEB), and p-toluene sulfonyl chloride (TsCl), and CuBr, CuCl, CuSCN, FeBr2, and FeCl2, respectively. 2,2 -Bipyridine and its derivatives were used as ligands. The overall reaction scheme and the structure of the used reagents are shown in Scheme 2. [Pg.22]

Fig. 2 Effects of metal salts, ligands, and initiators on Cmma (s)> / (b), PDls (c) of the polymers in the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in p-xylene at 90°C. [MMA]o [initiator]o [metal salt]o [ligand]o = 150 1 1 2, MMA/p —xylene = l 2v/v. EBIB, MBP, BEB, and TsCl were used as initiator from right to left in each ligand column, respectively (Reprinted with permission from [34]. Copyright (2004) John Wiley Sons, Inc.)... Fig. 2 Effects of metal salts, ligands, and initiators on Cmma (s)> / (b), PDls (c) of the polymers in the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in p-xylene at 90°C. [MMA]o [initiator]o [metal salt]o [ligand]o = 150 1 1 2, MMA/p —xylene = l 2v/v. EBIB, MBP, BEB, and TsCl were used as initiator from right to left in each ligand column, respectively (Reprinted with permission from [34]. Copyright (2004) John Wiley Sons, Inc.)...
Kwak Y, Matyjaszewski K (2008) Effect of initiator and ligand structures on ATRP of styrene and methyl methacrylate initiated by alkyl dithiocarbamate. Macromolecules 41 6627-6635... [Pg.58]

Another approach is to use an initiator for ATRP that produces a polymer with a functional group capable of initiating a non-ATRP polymerization. ATRP polymerization of methyl methacrylate with 2,2,2-tribromoethanol produces an HO-terminated poly(methyl methacrylate). The hydroxyl group acts as an initiator in the presence of triethyl aluminum for the ring-opening polymerization of caprolactone. [Pg.324]

By taking advantage of the simultaneous enzyme inhibition by nickel, the nickel-catalyzed ATRP, and the stereoselectivity of the enzyme, Peters et al. obtained chiral block copolymers by this method from 4-methyl-e-caprolactone (4-MeCL) by [27], The polymerization of racemic 4-MeCL showed good enantioselectivity and produced a chiral macroinitiator with ATRP endgroup by selectively polymerizing only the (5 )-4-MeCL. Macroinitiation was then started by adding the nickel catalyst and methyl methacrylate (MMA) to the reaction mixture, which simultaneously inhibited the enzyme and activated the ATRP process. Chiral poly[MMA-fe-(5 )-4-MeCL] was successfully obtained in this synthesis. [Pg.88]

The structure of copolymers obtained by ATRP copolymerization of 5,6-benzo-2-methylene-l,3-dioxepane (BMDO) with H-butyl acrylate ( BA) using ethyl 2-bromoisobutyrate and iV,iV,iV, iV ,iV -pentamethyldiethylenetri-amine/copper(l) bromide, as the initiator and catalyst, respectively, was studied by ID and 2D NMR techniques, which revealed a quantitative ring opening of BMDO in the copolymerization <2005PLM11698>. For a similar study of copolymers of BMDO and styrene, see <2003MM6152>, and with methyl methacrylate, <2003MM2397>. [Pg.325]

PP-b-PMMA (Mn = 22220, Mw/Mn = 1.14) was produced by CRP via another route. Terminally vinyl PP (Mn = 3100, Mw/Mn = 1.45, isotactic-ity = 32%) prepared using a zirconocene catalyst was converted to terminally brominated PP via PP-SiH prepared by hydrosilylation [70]. The resulting PP-b-PMMA was purified by extraction of unreacted PP with diethyl ether. Poly(ethylene-co-butene)-bZocfc-poly(methyl methacrylate) (EBR-b-PMMA) was synthesized through the bromination of terminally hydroxy-lated EBR (Mw = 3600 g/mol, Mw/Mn = 1.05), which was commercially available [71]. An atactic PP/PMMA had been synthesized by a combination of metallocene catalyses, Cp2ZrCl2 and Me2Si(CpMe4)(.W-f-Bu)TiCl2, and ATRP [72]. [Pg.96]

Louie and Grubbs prepared an iron-based catalyst for atom transfer radical polymerization (ATRP) [49]. By heating a solution of Iz Prim and FeX2 (X = Br, Cl), crystals of Fe(Iz Prim)2X2 were obtained. These complexes mediated the homogeneous ATRP of styrene and methyl methacrylate with... [Pg.175]

The ruthenium catalyst RuCl2(= CHPh)(PCy3)2 is able to promote both alkene metathesis polymerization (ROMP) and atom transfer polymerization (ATRP) [80,81]. The bifunctional catalyst A was designed to promote both ROMP of cyclooctadiene (COD) and ATRP of methyl methacrylate (MMA). Thus, catalyst A was employed to perform both polymerizations in one pot leading to diblock polybutadiene/polymethylmethacrylate copolymer (58-82% yield, PDI = 1.5). After polymerization the reaction vessel was exposed to hydrogen (150 psi, 65 °C, 8h), under conditions for Ru(H2)(H)Cl(PCy3)2 to be produced, and the hydrogenation of diblock copolymer could attain 95% [82] (Scheme 36). [Pg.314]

Hu, Z., Shen, X., Qiu, H., Lai, G., Wu, J., and Li, W. 2009. AGET ATRP of methyl methacrylate with poly(ethylene glycol) (PEG) as solvent and TMEDA as both ligand and reducing agent. European Polymer Journal, 45 2313-8. [Pg.299]

Scheme 13.S End-capping of poly-methyl methacrylate (poly-MMA) formed by ATRP by silyl enol ethers. Scheme 13.S End-capping of poly-methyl methacrylate (poly-MMA) formed by ATRP by silyl enol ethers.
Three key conditions must be met to design a uniformly reactive, recoverable, and recyclable polymerization catalyst (1) the synthetic protocol used to make the immobilized catalyst must lead to only one type of active site on the surface, (2) the support material must be able to allow sufficient transport of reactants to and polymer from the active site, and (3) at the end of the reaction, the active site must not be irreversibly changed or decomposed [23]. Research in our lab has thus far sought to investigate these points using the atom transfer radical polymerization (ATRP) of methyl methacrylate as a model reaction. [Pg.447]


See other pages where Methyl methacrylate , ATRP is mentioned: [Pg.213]    [Pg.137]    [Pg.213]    [Pg.137]    [Pg.176]    [Pg.114]    [Pg.234]    [Pg.246]    [Pg.664]    [Pg.135]    [Pg.34]    [Pg.74]    [Pg.92]    [Pg.153]    [Pg.213]    [Pg.12]    [Pg.643]    [Pg.127]    [Pg.127]    [Pg.17]    [Pg.31]    [Pg.361]    [Pg.386]    [Pg.211]    [Pg.181]    [Pg.287]    [Pg.255]    [Pg.127]    [Pg.50]    [Pg.161]    [Pg.285]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



Methyl methacrylate

© 2024 chempedia.info