Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals, Pauli-Sommerfeld theory

The Pauli-Sommerfeld theory of metals is the extension of this simple quantum mechanical picture to three dimensions, and it already enables us to calculate some properties reasonably well. [Pg.299]

According to the Pauli exclusion principle, the conduction electrons occupy the states from the bottom of the conduction band up to an energy level where the metal becomes neutral. This highest energy level occupied by an electron is the Fermi level, /.. In the Sommerfeld theory of metals, a natural reference point of the energy level is the bottom of the conduction band. The Fermi level with respect to that reference point is... [Pg.93]

Optical properties of metal nanoparticles embedded in dielectric media can be derived from the electrodynamic calculations within solid state theory. A simple model of electrons in metals, based on the gas kinetic theory, was presented by Drude in 1900 [9]. It assumes independent and free electrons with a common relaxation time. The theory was further corrected by Sommerfeld [10], who incorporated corrections originating from the Pauli exclusion principle (Fermi-Dirac velocity distribution). This so-called free-electron model was later modified to include minor corrections from the band structure of matter (effective mass) and termed quasi-free-electron model. Within this simple model electrons in metals are described as... [Pg.80]

Fowler proposed a theory in 1931 which showed that the photoelectric current variation with light frequency could be accounted for by the effect of temperature on the number of electrons available for emission, in accordance with the distribution law of Sommerfeld s theory of metals. Sommerfeld s theory (1928) had resolved some of the problems surrounding the original models for electrons in metals. In classical Drude theory, a metal had been envisaged as a three-dimensional potential well (or box) containing a gas of freely mobile electrons. This adequately explained their high electrical and thermal conductivities. However, because experimentally it is found that metallic electrons do not show a gaslike heat capacity, the Boltzman distribution law is inappropriate. A Fermi-Dirac distribution function is required, consistent with the need that the electrons obey the Pauli exclusion principle, and this distribution function has the form... [Pg.46]


See other pages where Metals, Pauli-Sommerfeld theory is mentioned: [Pg.704]    [Pg.679]    [Pg.188]   
See also in sourсe #XX -- [ Pg.299 ]




SEARCH



Pauli theory

Pauly

Sommerfeld theory

© 2024 chempedia.info