Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal-solution interface thermodynamic approach

Two main approaches to the investigation of the metal/solution interface can be distinguished molecular and thermodynamic. In the first... [Pg.2]

The liquid metal mercury-solution interface presents the advantage that it approaches closest to an ideal polarizable interface and, therefore, it adopts the potential difference applied between it and a non-polarizable interface. For this reason, the mercury-solution interface has been extensively selected to carry out measurements of the surface tension dependence on the applied potential. In the case of other metal-solution interfaces, the thermodynamic study is much more complex since the changes in the interfacial area are determined by the increase of the number of surface atoms (plastic deformation) or by the increase of the interatomic lattice spacing (elastic deformation) [2, 4]. [Pg.16]

Various chemical surface complexation models have been developed to describe potentiometric titration and metal adsorption data at the oxide—mineral solution interface. Surface complexation models provide molecular descriptions of metal adsorption using an equilibrium approach that defines surface species, chemical reactions, mass balances, and charge balances. Thermodynamic properties such as solid-phase activity coefficients and equilibrium constants are calculated mathematically. The major advancement of the chemical surface complexation models is consideration of charge on both the adsorbate metal ion and the adsorbent surface. In addition, these models can provide insight into the stoichiometry and reactivity of adsorbed species. Application of these models to reference oxide minerals has been extensive, but their use in describing ion adsorption by clay minerals, organic materials, and soils has been more limited. [Pg.220]

An alternative description of a molecular solvent in contact with a solute of arbitrary shape is provided by the 3D generalization of the RfSM theory (3D-RISM) which yields the 3D correlation functions of interaction sites of solvent molecules near the solute. It was first proposed in a general form by Chandler, McCoy, and Singer [22] and recently developed by several authors for various systems by Cortis, Rossky, and Friesner [23] for a one-component dipolar molecular liquid, by Beglov and Roux [24, 25] for water and a number of organic molecules in water, and by Hirata and co-workers for water [26, 27], metal-water [26, 28] and metal oxide-water [31] interfaces, orientationally dependent potentials of mean force between molecular ions in a polar molecular solvent [29], ion pairs in aqueous electrolyte [30], and hydration of hydrophobic and hydrophilic solutes alkanes [32], polar molecule of carbon monoxide [33], simple ions [34], protein [35], amino acids and polypeptides [36, 37]. It should be noted that accurate calculation of the solvation thermodynamics for ionic and polar solutes in a polar molecular liquid requires special corrections to the 3D-RISM equations to eliminate the electrostatic artifacts of the supercell treatment employed in the 3D-RISM approach [30, 34]. [Pg.171]


See other pages where Metal-solution interface thermodynamic approach is mentioned: [Pg.289]    [Pg.306]    [Pg.85]    [Pg.201]    [Pg.6]    [Pg.650]    [Pg.22]    [Pg.114]    [Pg.220]    [Pg.365]    [Pg.401]   
See also in sourсe #XX -- [ Pg.35 ]




SEARCH



Interface solution

Interface thermodynamics

Metal solutions

Metal/solution interface

Metals thermodynamics

Solution approaches

Solutions metallic

Thermodynamic approach

Thermodynamic metalations

© 2024 chempedia.info