Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal complexes Mn

Figure 3. Schematic illustration of core/shell nanoparticle formation via redox transmetalation process. Metal ions (Mu) of reactant metal complexes (Mn-L ) are reduced on the surface of Mi nanoparticles while neutral Mi atoms are oxidized to Mi " by forming a Mi-ligand complex (Mi-Lj) as a resultant reaction byproduct. Repeating this process results in the complete coverage of shell layers on core metals. (Reprinted from Ref [145], 2005, with permission from American Chemical Society.)... Figure 3. Schematic illustration of core/shell nanoparticle formation via redox transmetalation process. Metal ions (Mu) of reactant metal complexes (Mn-L ) are reduced on the surface of Mi nanoparticles while neutral Mi atoms are oxidized to Mi " by forming a Mi-ligand complex (Mi-Lj) as a resultant reaction byproduct. Repeating this process results in the complete coverage of shell layers on core metals. (Reprinted from Ref [145], 2005, with permission from American Chemical Society.)...
Therefore the most common homoleptic bis-dithiolene metal complexes [Mn(S2C2R2)2]n" (M = Ni, Pd, Pt) can potentially take part in the redox sequence illustrated in Scheme 7. Once again, this has to be considered a simplified sequence in that the occurrence of internal metal-to-ligand electron transfer cannot be ruled out. [Pg.357]

Section 61.3.6 Catalysis by First-row Transition Metal Complexes (Mn, Fe, Co, Cu)... [Pg.399]

Periodic acid is a versatile oxidant since, depending on pH, the redox potential for the periodate-iodate couple varies from 0.7 V in aqueous basic media to 1.6 V in aqueous acidic media.Based on this observation, Villemin and Ricard devised an oxidative cleavage of glycols, in which mcjo-l,2-diphenyl-1,2-ethanediol was oxidized by periodic acid on alumina to benzaldehyde in 82% yield in aqueous ethanol (90% ethanol) at room temperature in 26 h. The same supported oxidant converted aromatics into quinones. In the presence of transition metal complexes (Mn ), a-arylalkenes suffer oxidative cleavage to aldehydes. For example, tran.r-stilbene gives benzaldehyde at room temperature. [Pg.841]

Non-covalent insertion of several modified metal cofactors and synthetic metal complexes into protein cavities such as serum albumin (SA) and Mb has been reported [5, 24, 28, 30, 69], If synthetic metal complexes, whose structures are very different from native cofactors, can be introduced into protein cages, the bioconjugation of metal complexes will be applicable to many proteins and metal complexes. Mn(corrole) and Cn(phthalocyanine) are inserted into SA by non-covalent interactions and the composites catalyze asymmetric sulfoxidation and Diels-Alder reactions with up to 74 and 98% ee, respectively (Fig. 2c) [28, 30], Since the heme is coordinated to Tyrl61 in the albumin cavity, determined by X-ray crystal structure [20], it is expected that both Mn(corrole) and Cu(phtalocyanine) are also bound to albumin with the same coordination. The incorporation of synthetic metal complexes in protein cavities using these methods is a powerful approach for asymmetric catalytic reactions. However, there are still some difficulties in further design of the composites for improving reactivities and understanding reaction mechanisms because detailed structural analyses are not available for most of the composites. [Pg.29]

The oxidation of OH by [Fe(CN)6] in solution has been examined. Application of an electrical potential drives the reaction electrochemically, rather than merely generating a local concentration of OH at the anode, as has been suggested previously, to produce both O and [Fe(CN)6] in the vicinity of the same electrode. With high [OH ] or [Fe(CN)6] /[Fe(CN)6] ratio, the reaction proceeds spontaneously with a second-order rate constant of 2.2 x 10 M s at 25 °C. Under anaerobic conditions, iron(III) porphyrin complexes in dimethyl sulfoxide solution are reduced to the iron(II) state by addition of hydroxide ion or alkoxide ions. Excess hydroxide ion serves to generate the hydroxoiron(II) complex. The oxidation of hydroxide and phenoxide ions in acetonitrile has been characterized electrochemically " in the presence of transition metal complexes [Mn(II)L] [M = Fe,Mn,Co,Ni L = (OPPh2)4,(bipy)3] and metalloporphyrins, M(por) [M = Mn(III), Fe(III), Co(II) por = 5,10,15,20-tetraphenylpor-phinato(2-), 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphinato(2-)]. Shifts to less positive potentials for OH and PhO are suggested to be due to the stabilization of the oxy radical products (OH and PhO ) via a covalent bond. Oxidation is facilitated by an ECE mechanism when OH is in excess. [Pg.71]

Figure 11.1.25 shows data from a microdroplet liquid-liquid voltammetry experiment in which lactate anions A are transferred from the aqueous phase into the organic microdroplet phase (here composed of the organic solvent 4-(3-phenylpropyl)-pyridine or PPP containing a Mn(III/II) redox system and naphthyl-2-boronic acid B [120]). Schematically, the oxidation of each metal complex Mn(II)TPP (with TPP = tetraphenylporphyrinato) is generating a positive charge within the microdroplet and this is coupled to the reversible transfer of the anion A ... [Pg.99]


See other pages where Metal complexes Mn is mentioned: [Pg.890]    [Pg.163]    [Pg.318]    [Pg.374]    [Pg.841]    [Pg.318]    [Pg.374]    [Pg.890]    [Pg.890]    [Pg.148]    [Pg.6463]    [Pg.6519]    [Pg.307]    [Pg.630]    [Pg.348]   
See also in sourсe #XX -- [ Pg.2 , Pg.5 , Pg.263 , Pg.265 , Pg.344 ]




SEARCH



Mn complexes

© 2024 chempedia.info