Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mesitylenic acid

Yield.—Mesitylenic acid 50% theoretical (12 gms.). Uvitic acid 40% theoretical (12 gms.). Mesitylenic acid forms colourless monoclinic crystals difficultly soluble in hot water easily soluble in cold alcohol M.P. 166°. Uvitic acid forms colourless fine needles insoluble in cold and hot water readily soluble in alcohol and ether M.P. 287°—288°. (A., 122, 184 141, 144 147, 292 Z. Ch 4, 119.)... [Pg.246]

Concentrated sulphuric acid. The paraffin hydrocarbons, cych-paraffins, the less readily sulphonated aromatic hydrocarbons (benzene, toluene, xylenes, etc.) and their halogen derivatives, and the diaryl ethers are generally insoluble in cold concentrated sulphuric acid. Unsaturated hydrocarbons, certain polyalkylated aromatic hydrocarbons (such as mesitylene) and most oxygen-containing compounds are soluble in the cold acid. [Pg.1049]

The rates of nitration of mesitylene-a-sulphonate anion (iii) and iso-durene-a -sulphonate anion (iv) in mixtures of aqueous nitric and perchloric acid followed a zeroth-order rate law. Although the rate of exchange of oxygen could not be measured because of the presence of perchloric acid, these results again show that, under conditions most amenable to its existence and involvement, the nitric acidium ion is ineffective in nitration. [Pg.12]

Rates of nitration in perchloric acid of mesitylene, luphthalene and phenol (57 I-6i-i %), and benzene (57 i-64 4%) have been deter-mined. The activated compounds are considered below ( 2.5). A plot of the logarithms of the second-order rate coefficients for the nitration of benzene against — ( f + log over the range of acidity... [Pg.25]

The rates of nitration, under a variety of conditions (56-80% sulphuric acid, 57-62% perchloric acid), of mesitylene and benzene... [Pg.27]

In experiments on the nitration of benzene in acetic acid, to which urea was added to remove nitrous acid (which anticatalyses nitration 4.3.1), the rate was found to be further depressed. The effect was ascribed to nitrate ions arising from the formation of urea nitrate. In the same way, urea depressed the rate of the zeroth-order nitration of mesitylene in sulpholan. ... [Pg.41]

The effect of nitrous acid on the nitration of mesitylene in acetic acid was also investigated. In solutions containing 5-7 mol 1 of nitric acid and < c. 0-014 mol of nitrous acid, the rate was independent of the concentration of the aromatic. As the concentration of nitrous acid was increased, the catalysed reaction intervened, and superimposed a first-order reaction on the zeroth-order one. The catalysed reaction could not be made sufficiently dominant to impose a truly first-order rate. Because the kinetic order was intermediate the importance of the catalysed reaction was gauged by following initial rates, and it was shown that in a solution containing 5-7 mol 1 of nitric acid and 0-5 mol 1 of nitrous acid, the catalysed reaction was initially twice as important as the general nitronium ion mechanism. [Pg.58]

Nitration at the encounter rate and nitrosation As has been seen ( 3.3), the rate of nitration by solutions of nitric acid in nitromethane or sulpholan reaches a limit for activated compounds which is about 300 times the rate for benzene imder the same conditions. Under the conditions of first-order nitration (7-5 % aqueous sulpholan) mesitylene reacts at this limiting rate, and its nitration is not subject to catalysis by nitrous acid thus, mesitylene is nitrated by nitronium ions at the encounter rate, and under these conditions is not subject to nitration via nitrosation. The significance of nitration at the encounter rate for mechanistic studies has been discussed ( 2.5). [Pg.60]

Under the conditions mentioned, i-methylnaphthalene was nitrated appreciably faster than was mesitylene, and the nitration was strongly catalysed by nitrous acid. The mere fact of reaction at a rate greater than the encounter rate demonstrates the incursion of a new mechanism of nitration, and its characteristics identify it as nitration via nitrosation. [Pg.60]

Nitrations of the zeroth order are maintained with much greater difficulty in solutions of acetyl nitrate in acetic anhydride than in solutions of nitric acid in inert organic solvents, as has already been mentioned. Thus, in the former solutions, the rates of nitration of mesi-tylene deviated towards a dependence on the first power of its concentration when this was < c. o-05-o-i mol 1 , whereas in nitration with nitric acid in sulpholan, zeroth-order kinetics could be observed in solutions containing as little as 10 mol 1 of mesitylene ( 3.2.1). [Pg.88]

Similarly, acetic acid catalysed the zeroth-order nitration of mesitylene without affecting the kinetic form... [Pg.89]

The evidence outlined strongly suggests that nitration via nitrosation accompanies the general mechanism of nitration in these media in the reactions of very reactive compounds.i Proof that phenol, even in solutions prepared from pure nitric acid, underwent nitration by a special mechanism came from examining rates of reaction of phenol and mesi-tylene under zeroth-order conditions. The variation in the initial rates with the concentration of aromatic (fig. 5.2) shows that mesitylene (o-2-0 4 mol 1 ) reacts at the zeroth-order rate, whereas phenol is nitrated considerably faster by a process which is first order in the concentration of aromatic. It is noteworthy that in these solutions the concentration of nitrous acid was below the level of detection (< c. 5 X mol... [Pg.91]

The heats of formation of Tt-complexes are small thus, — A//2soc for complexes of benzene and mesitylene with iodine in carbon tetrachloride are 5-5 and i2-o kj mol , respectively. Although substituent effects which increase the rates of electrophilic substitutions also increase the stabilities of the 7r-complexes, these effects are very much weaker in the latter circumstances than in the former the heats of formation just quoted should be compared with the relative rates of chlorination and bromination of benzene and mesitylene (i 3 o6 x 10 and i a-Sq x 10 , respectively, in acetic acid at 25 °C). [Pg.117]

The kinetics of the nitration of benzene, toluene and mesitylene in mixtures prepared from nitric acid and acetic anhydride have been studied by Hartshorn and Thompson. Under zeroth order conditions, the dependence of the rate of nitration of mesitylene on the stoichiometric concentrations of nitric acid, acetic acid and lithium nitrate were found to be as described in section 5.3.5. When the conditions were such that the rate depended upon the first power of the concentration of the aromatic substrate, the first order rate constant was found to vary with the stoichiometric concentration of nitric acid as shown on the graph below. An approximately third order dependence on this quantity was found with mesitylene and toluene, but with benzene, increasing the stoichiometric concentration of nitric acid caused a change to an approximately second order dependence. Relative reactivities, however, were found to be insensitive... [Pg.224]

Fluoroalkjiations are frequentiy performed indirectly using tandem reactions. Arenes react with sodium borohydride in trifluoroacetic acid to afford otherwise difficult to obtain l,l,l-trifluoro-2,2-diarylethanes. Presumably sodium borohydride reacts initially with the trifluoroacetic acid to produce the trifluoroacetaldehyde or its equivalent, which rapidly undergoes Friedel-Crafts-type condensation to give an intermediate carbinol. The carbinol further alkylates ben2ene under the reaction conditions giving the observed product. The reaction with stericaHy crowded arenes such as mesitylene and durene... [Pg.554]

Similarly, A[-carboxy-a-amino acid anhydrides react with aromatics such as toluene, xylenes, and mesitylene to give a-amino acylated products ia moderate yields with almost complete retention of configuration of the a-amino acid. [Pg.558]

Nitrations can be performed in homogeneous media, using tetramethylene sulfone or nitromethane (nitroethane) as solvent. A large variety of aromatic compounds have been nitrated with nitronium salts in excellent yields in nonaqueous media. Sensitive compounds, otherwise easily hydroly2ed or oxidized by nitric acid, can be nitrated without secondary effects. Nitration of aromatic compounds is considered an irreversible reaction. However, the reversibihty of the reaction has been demonstrated in some cases, eg, 9-nitroanthracene, as well as pentamethylnitrobenzene transnitrate benzene, toluene, and mesitylene in the presence of superacids (158) (see Nitration). [Pg.561]


See other pages where Mesitylenic acid is mentioned: [Pg.883]    [Pg.1152]    [Pg.245]    [Pg.246]    [Pg.827]    [Pg.827]    [Pg.670]    [Pg.695]    [Pg.203]    [Pg.119]    [Pg.119]    [Pg.901]    [Pg.203]    [Pg.591]    [Pg.347]    [Pg.710]    [Pg.335]    [Pg.346]    [Pg.709]    [Pg.883]    [Pg.1152]    [Pg.245]    [Pg.246]    [Pg.827]    [Pg.827]    [Pg.670]    [Pg.695]    [Pg.203]    [Pg.119]    [Pg.119]    [Pg.901]    [Pg.203]    [Pg.591]    [Pg.347]    [Pg.710]    [Pg.335]    [Pg.346]    [Pg.709]    [Pg.255]    [Pg.470]    [Pg.701]    [Pg.24]    [Pg.33]    [Pg.35]    [Pg.60]    [Pg.69]    [Pg.225]    [Pg.607]   
See also in sourсe #XX -- [ Pg.245 ]

See also in sourсe #XX -- [ Pg.487 , Pg.695 ]




SEARCH



Mesitylene carboxylic acid

© 2024 chempedia.info