Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mercury Lewis acid

Trifluoroacetates of silver, mercury(II), thallium(lll), lead(IV), and lodme(III) are synthetically valuable reagents that combine the properties of strong electrophiles, oxidizers, and Lewis acids Furthermore, trifluoroacetate anions are stable to oxidation, are weak nucleophiles, and usually do not cause any contamination of the reaction mixture... [Pg.950]

Complex [(CXI )Ir(/j,-pz)(/i,-SBu )(/j,-Ph2PCH2PPh2)Ir(CO)] reacts with iodine to form 202 (X = I) as the typical iridium(II)-iridium(II) symmetrical species [90ICA(178)179]. The terminal iodide ligands can be readily displaced in reactions with silversalts. Thus, 202 (X = I), upon reaction with silver nitrate, produces 202 (X = ONO2). Complex [(OC)Ir(/i,-pz )(/z-SBu )(/i-Ph2PCH2PPh2)Ir(CO)] reacts with mercury dichloride to form 203, traditionally interpreted as the product of oxidative addition to one iridium atom and simultaneous Lewis acid-base interaction with the other. The rhodium /i-pyrazolato derivative is prepared in a similar way. Unexpectedly, the iridium /z-pyrazolato analog in similar conditions produces mercury(I) chloride and forms the dinuclear complex 204. [Pg.208]

Alkynes don t react directly with aqueous acid but will undergo hydration readily in the presence of mercury(II) sulfate as a Lewis acid catalyst. The reaction occurs with Markovnikov regiochemistry the -OH group adds to the more highly substituted carbon, and the — H attaches to the less highly substituted one. [Pg.264]

Many years ago, geochemists recognized that whereas some metallic elements are found as sulfides in the Earth s crust, others are usually encountered as oxides, chlorides, or carbonates. Copper, lead, and mercury are most often found as sulfide ores Na and K are found as their chloride salts Mg and Ca exist as carbonates and Al, Ti, and Fe are all found as oxides. Today chemists understand the causes of this differentiation among metal compounds. The underlying principle is how tightly an atom binds its valence electrons. The strength with which an atom holds its valence electrons also determines the ability of that atom to act as a Lewis base, so we can use the Lewis acid-base model to describe many affinities that exist among elements. This notion not only explains the natural distribution of minerals, but also can be used to predict patterns of chemical reactivity. [Pg.1505]

Metals that are soft Lewis acids, for example cadmium, mercury, and lead, are extremely hazardous to living organisms. Tin, in contrast, is not. One reason is that tin oxide is highly insoluble, so tin seldom is found at measurable levels in aqueous solution. Perhaps more important, the toxic metals generally act by binding to sulfur in essential enz Tnes. Tin is a harder Lewis acid than the other heavy metals, so it has a lower affinity for sulfur, a relatively soft Lewis base. [Pg.1520]

Organomercury reagents do not react with ketones or aldehydes but Lewis acids cause reaction with acyl chlorides.187 With alkenyl mercury compounds, the reaction probably proceeds by electrophilic attack on the double bond with the regiochemistry being directed by the stabilization of the (3-carbocation by the mercury.188... [Pg.663]

Hawthorne and co-workers have also produced a series of macrocyclic Lewis acid hosts called mercuracarborands (156, 157, and 158) (Fig. 84) with structures incorporating electron-withdrawing icosahedral carboranes and electrophilic mercury centers. They were synthesized by a kinetic halide ion template effect that afforded tetrameric cycles or cyclic trimers in the presence or absence of halide ion templates, respectively.163 These complexes, which can bind a variety of electron-rich guests, are ideal for catalytic and ion-sensing applications, as well as for the assembly of supramolecular architectures. [Pg.83]

The mercuration of ferrocenylimines with Hg(OAc)2 has been studied. - 6 Mercuration occurs selectively at the a-position relative to the imine group to afford compounds 86a-i (Scheme gy107,108 The regioselectivity of these reactions points to the directing role of the Lewis-basic imine functionality. Similar factors probably play a role in the formation of the ferrocenylketone and ferrocenylaldehyde derivatives 87a-f and 87g-j, respectively. These derivatives readily react with amines to afford the corresponding imines (Scheme 9). Presumably, the Lewis-acidic mercury center of the monomercurated ferrocenylketones and ferrocenylaldehydes activates the carbonyl functionality toward nucleophilic attack by the amine. [Pg.433]

Polynuclear organomercurials featuring proximal mercury centers have often been considered as multidentate Lewis acids. This research area has witnessed some noteworthy developments which will be summarized in the following sections. [Pg.454]

In the presence of proton and/or Lewis acid and strong nucleophiles bicyclo[3.2.0]heptan-6-ones are converted to 3-substituted cycloheptanones (Table 15). Bicyclo[3.2.0]heptan-6-ones rearrange to give 3-iodocycloheptanones on treatment with iodotrimethylsilane. Zinc(II) iodide or mercury(II) halides as catalysts enhance the rate and the selectivity of the reaction.31 If a second, enolizable carbonyl group is present, an intramolecular alkylation may follow the ring enlargement under these reaction conditions.32 Consecutive treatment with tributyltin hydride/ 2,2 -azobisisobutyronitrile affords reduced, iodo-free cycloheptanones, whilst treatment with l,8-diazabicyclo[5.4.0]undecene yields cycloheptenones.33 Similarly, benzenethiol adds to the central bond of bicyclo[3.2.0]heptan-6-ones in the presence of zinc(II) chloride and hydrochloric acid under anhydrous conditions to form 3-(phenylsulfanyl)cycloheptanones.34... [Pg.565]

The above reactions in this section have been examples of addition alone or addition followed by elimination. Ligand reactions involving nucleophilic substitution are also known and these are of the dealkylation type. Lewis acids such as aluminum chloride or tin(IV) chloride have been used for many years in the selective demethylation of aromatic methyl ethers, where chelation is involved (Scheme 27). Similar cleavage of thioethers, specially using mercury(II) salts, is commonly used to remove thioacetal functions masking ketones (equation 27).104 In some cases, reactions of metal ions with thioether ligands result in isolation of complexes of the dealkylated organic moiety (equations 28 and 29).105-107... [Pg.432]

When aluminum is reacted with diphenyl mercury (Cf1H.),Hg. triph-enylaluniinum (CVH ,).lewis acids to form compounds with electron-donating substances. The resulting compounds are the organometallic basis for producing polymers of the Al-N type. [Pg.65]

Lewis acids based on boronic acid derivatives or main group elements such as mercury, tin and silicon form strong bonds to anions with considerable covalency, exemplified by hydride sponge and the anticrowns. [Pg.315]

Yang, X. G., Knobler, C. B., Zheng, Z. P., Hawthorne, M. F., Host-guest chemistry of a new class of macrocyclic multidentate lewis-acids comprised of carborane-supported electrophilic mercury centers. J. Am. Chem. Soc. 1994,116, 7142-7159. [Pg.318]


See other pages where Mercury Lewis acid is mentioned: [Pg.455]    [Pg.455]    [Pg.68]    [Pg.247]    [Pg.194]    [Pg.207]    [Pg.45]    [Pg.620]    [Pg.420]    [Pg.450]    [Pg.451]    [Pg.453]    [Pg.458]    [Pg.123]    [Pg.82]    [Pg.61]    [Pg.56]    [Pg.54]    [Pg.234]    [Pg.509]    [Pg.392]    [Pg.668]    [Pg.68]    [Pg.159]    [Pg.327]    [Pg.1195]    [Pg.104]    [Pg.139]    [Pg.269]    [Pg.306]    [Pg.308]    [Pg.28]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Lewis acid-bases mercury based

Mercury acidity

© 2024 chempedia.info