Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane proteins transmembrane

TARGETING CELL MEMBRANE PROTEINS TRANSMEMBRANE TRANSPORTER PROTEINS... [Pg.433]

Gram-negative bacteria are surrounded by two membranes, an inner plasma membrane and an outer membrane. These are separated by a periplasmic space. Most plasma membrane proteins contain long, continuous sequences of about 20 hydrophobic residues that are typical of transmembrane a helices such as those found in bacteriorhodopsin. In contrast, most outer membrane proteins do not show such sequence patterns. [Pg.228]

This enigma was resolved in 1990 when the x-ray structure of an outer membrane protein, porin, showed that the transmembrane regions were p... [Pg.228]

Membrane lipids have no specific interaction with protein transmembrane a helices... [Pg.246]

The gene defective in cystic fibrosis codes for CFTR (cystic fibrosis transmembrane condnctance regulator), a membrane protein that pumps CP out of cells. If this CP pump is defective, CP ions remain in cells, which then take up water from the surrounding mucus by osmosis. The mucus thickens and accumulates in various organs, including the lungs, where its presence favors infections such as pneumonia. Left untreated, children with cystic fibrosis seldom survive past the age of 5 years. [Pg.420]

ATP synthase actually consists of two principal complexes. The spheres observed in electron micrographs make up the Fj unit, which catalyzes ATP synthesis. These Fj spheres are attached to an integral membrane protein aggregate called the Fq unit. Fj consists of five polypeptide chains named a, j3, y, 8, and e, with a subunit stoichiometry ajjSaySe (Table 21.3). Fq consists of three hydrophobic subunits denoted by a, b, and c, with an apparent stoichiometry of ajbgCg.ig- Fq forms the transmembrane pore or channel through which protons move to drive ATP synthesis. The a, j3, y, 8, and e subunits of Fj contain 510, 482, 272, 146, and 50 amino acids, respectively, with a total molecular mass... [Pg.694]

Cell membrane spanning proteins contain a luminal/ extracellular domain, a transmembrane region and a cytosolic domain. In a type I transmembrane protein the N-terminus is the extracellular/luminal part of the protein, whereas the C-terminus comprises the cytosolic region of the membrane protein. [Pg.1252]

The 3 subunits ((31 -(34) are membrane proteins with a single transmembrane domain and an extracellular immunoglobulin-like motif, and perform the regulatory roles of the sodium channel. The (31 subunit accelerates the activation and inactivation kinetics. The (32 subunit is covalently linked to the a subunit, and is necessary for the efficient assembly of the channel. The more recently identified (33 subunit is homologous to (31, but differs in its distribution within the brain and in a weaker accelerating property. The (34 subunit is similar to (32 and is covalently linked to the a subunit. [Pg.1306]

The group of the be complexes comprises bci complexes in mitochondria and bacteria and bef complexes in chloroplasts. These complexes are multisubunit membrane proteins containing four redox centers in three subunits cytochrome b (cytochrome be in bef complexes) comprising two heme b centers in a transmembrane arrangement, cyto-... [Pg.146]

Figure 41-7. The fluid mosaic model of membrane structure. The membrane consists of a bimolecu-lar lipid layer with proteins inserted in it or bound to either surface. Integral membrane proteins are firmly embedded in the lipid layers. Some of these proteins completely span the bilayer and are called transmembrane proteins, while others are embedded in either the outer or inner leaflet of the lipid bilayer. Loosely bound to the outer or inner surface of the membrane are the peripheral proteins. Many of the proteins and lipids have externally exposed oligosaccharide chains. (Reproduced, with permission, from Junqueira LC, Carneiro J Basic Histology. Text Atlas, 10th ed. McGraw-Hill, 2003.)... Figure 41-7. The fluid mosaic model of membrane structure. The membrane consists of a bimolecu-lar lipid layer with proteins inserted in it or bound to either surface. Integral membrane proteins are firmly embedded in the lipid layers. Some of these proteins completely span the bilayer and are called transmembrane proteins, while others are embedded in either the outer or inner leaflet of the lipid bilayer. Loosely bound to the outer or inner surface of the membrane are the peripheral proteins. Many of the proteins and lipids have externally exposed oligosaccharide chains. (Reproduced, with permission, from Junqueira LC, Carneiro J Basic Histology. Text Atlas, 10th ed. McGraw-Hill, 2003.)...
Figure 46-5. Variations in the way in which proteins are inserted into membranes. This schematic representation, which illustrates a number of possible orientations, shows the segments of the proteins within the membrane as a-helicesand the other segments as lines. The LDL receptor, which crosses the membrane once and has its amino terminal on the exterior, is called a type I transmembrane protein. The asialoglycoprotein receptor, which also crosses the membrane once but has its carboxyl terminal on the exterior, is called a type II transmembrane protein. The various transporters indicated (eg, glucose) cross the membrane a number of times and are called type III transmembrane proteins they are also referred to as polytopic membrane proteins. (N, amino terminal C, carboxyl terminal.) (Adapted, with permission, from Wickner WT, Lodish HF Multiple mechanisms of protein insertion into and across membranes. Science 1985 230 400. Copyright 1985 by the American Association for the Advancement of Science.)... Figure 46-5. Variations in the way in which proteins are inserted into membranes. This schematic representation, which illustrates a number of possible orientations, shows the segments of the proteins within the membrane as a-helicesand the other segments as lines. The LDL receptor, which crosses the membrane once and has its amino terminal on the exterior, is called a type I transmembrane protein. The asialoglycoprotein receptor, which also crosses the membrane once but has its carboxyl terminal on the exterior, is called a type II transmembrane protein. The various transporters indicated (eg, glucose) cross the membrane a number of times and are called type III transmembrane proteins they are also referred to as polytopic membrane proteins. (N, amino terminal C, carboxyl terminal.) (Adapted, with permission, from Wickner WT, Lodish HF Multiple mechanisms of protein insertion into and across membranes. Science 1985 230 400. Copyright 1985 by the American Association for the Advancement of Science.)...
The anion exchange protein (band 3) is a transmembrane glycoprotein, with its carboxyl terminal end on the external surface of the membrane and its amino terminal end on the cytoplasmic surface. It is an example of a multipass membrane protein, extending across the... [Pg.615]


See other pages where Membrane proteins transmembrane is mentioned: [Pg.305]    [Pg.435]    [Pg.305]    [Pg.435]    [Pg.201]    [Pg.271]    [Pg.205]    [Pg.210]    [Pg.301]    [Pg.226]    [Pg.247]    [Pg.248]    [Pg.313]    [Pg.272]    [Pg.273]    [Pg.275]    [Pg.300]    [Pg.314]    [Pg.262]    [Pg.516]    [Pg.651]    [Pg.749]    [Pg.809]    [Pg.836]    [Pg.844]    [Pg.1017]    [Pg.1032]    [Pg.1157]    [Pg.1168]    [Pg.287]    [Pg.11]    [Pg.74]    [Pg.319]    [Pg.83]    [Pg.126]    [Pg.252]    [Pg.823]    [Pg.411]    [Pg.91]   
See also in sourсe #XX -- [ Pg.548 , Pg.548 ]

See also in sourсe #XX -- [ Pg.548 , Pg.548 ]




SEARCH



Membrane Proteins Contain Transmembrane a Helices

Transmembrane

Transmembrane protein

© 2024 chempedia.info