Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Melting silicon carbides

There are, of course, many more ceramics available than those listed here alumina is available in many densities, silicon carbide in many qualities. As before, the structure-insensitive properties (density, modulus and melting point) depend little on quality -they do not vary by more than 10%. But the structure-sensitive properties (fracture toughness, modulus of rupture and some thermal properties including expansion) are much more variable. For these, it is essential to consult manufacturers data sheets or conduct your own tests. [Pg.166]

In 1885, Charles Martin Hall invented his aluminum process and Hamilton Young Castner in 1890 developed the mercury-type alkali-chlorine cell, which produced caustic (sodium hydroxide) in its purest form. Edward G. Acheson in 1891, while attempting to make diamonds in an electric furnace, produced silicon carbide, the first synthetic abrasive, second to diamond in hardness. Four years later, Jacobs melted aluminum oxide to make a superior emeiy cloth. Within two decades, these two abrasives had displaced most natural cutting materials, including naturally occurring mixtures of aluminum and iron oxides. [Pg.234]

The process competes with the traditional method of fiber production in which the precursor material is melted, usually in an arc furnace, then drawn through spinnerets and spun or impinged by high pressure air. The melt-spin process is not well suited to materials with high melting points such as zirconia, silicon carbide, or pure alumina. [Pg.465]

Another process for silicon carbide fibers, developed by Verbeek and Winter of Bayer AG [45], also is based on polymeric precursors which contain [SiCH2] units, although linear polysilmethylenes are not involved. The pyrolysis of tetramethylsilane at 700°C, with provision for recycling of unconverted (CHg Si and lower boiling products, gave a polycarbosilane resin, yellow to red-brown in color, which was soluble in aromatic and in chlorinated hydrocarbons. Such resins could be melt-spun but required a cure-step to render them infusible before they were pyrolyzed to ceramic... [Pg.33]

The earliest work on silicon carbide fibers was done by Yajima and co-workers [3]. Yajima applied the Kumada [4] rearrangement to Burkhard s [5] dimethylpolysilane - an insoluble and infusible compound - (Eq. 1) and obtained by thermolysis at 400 - 450°C or by catalysis with polyborodiphenyl-siloxane at 350°C a melt spinnable and soluble polycarbosilane (Eq. 2). [Pg.293]

Diamond and silicon carbide are nonconductors of electricity and have very high melting points. The melting point of diamond is about 3500°C and that of SiC 2830°C. [Pg.54]

As noted above, the range of fibers employed does not precisely overlap with those employed for organic composites. Because the formation of the MMCs generally requires melting of the metal-matrix, the fibers need to have some stability to relatively high temperatures. Such fibers include graphite, silicon carbide, boron, alumina-silica, and alumina fibers. Most of these are available as continuous and discontinuous fibers. It also includes a number of thin metal wires made from tungsten, titanium, molybdenum, and beryllium. [Pg.255]

Silicon carbide is comparatively stable. The only violent reaction occurs when SiC is heated with a mixture of potassium dichromate and lead chromate. Chemical reactions do, however, take place between silicon carbide and a variety of compounds at relatively high temperatures. Sodium silicate attacks SiC above 1300°C, and SiC reacts with calcium and magnesium oxides above 1000°C and with copper oxide at 800°C to form the metal silicide. Silicon carbide decomposes in fused alkalies such as potassium chromate or sodium chromate and in fused borax or cryolite, and reacts with carbon dioxide, hydrogen, air, and steam. Silicon carbide, resistant to chlorine below 700°C, reacts to form carbon and silicon tetrachloride at high temperature. SiC dissociates in molten iron and the silicon reacts with oxides present in the melt, a reaction of use in the metallurgy of iron and steel (qv). The dense, self-bonded type of SiC has good resistance to aluminum up to about 800°C, to bismuth and zinc at 600°C, and to tin up to 400°C a new silicon nitride-bonded type exhibits improved resistance to cryolite. [Pg.465]

The conventional industrial method for the synthesis of a-silicon carbide is to heat silica (sand) with coke in an electric furnace at 2,000-2,500 °C. However, because of the high melting point of the product, it is difficult to fabricate by sintering or melt techniques. Thus, the discovery of a lower temperature fabrication and synthesis route to silicon carbide by Yajima and coworkers in 197526,27 proved to be an important technological breakthrough. This is a preceramic polymer pyrolysis route that has been developed commercially for the production of ceramic fibers. [Pg.320]

A considerable amount of subsequent research and process development has been carried out to produce silicon carbide with a reduced level of excess carbon via processes that allow more facile cross-linking.2 -32 Several hundred papers and patents on this topic exist in the literature, and only a few examples will be mentioned here. One process development involves the slurry spinning of fibers in place of melt spinning.33 In this process, silicon carbide powder, made by a conventional industrial process, is dispersed in a solution of carbosilanes in toluene. The syrupy paste is spun into fibers and then pyrolyzed to silicon carbide. These fibers are reported to be stable at 1,500 °C for 120 hours. [Pg.321]

Silicon nitride is prized for its hardness (9 out of 10 on the Mohr scale), its wear resistance, and its mechanical strength at elevated temperatures. It melts and dissociates into the elements at 1,900 °C, and has a maximum use temperature near 1,800 °C in the absence of oxygen and near 1,500 °C under oxidizing conditions.41 It also has a relatively low density (3.185 g/cm3). Unlike silicon carbide, silicon nitride is an electrical insulator. The bulk material has a relatively good stability to aggressive chemicals. This combination of properties underlies its uses in internal combustion engines and jet engines. [Pg.324]

Note that the silicide layer may grow not only between silicon and a transition metal, but also between a silicon-containing phase and a transition metal or an intermetallic compound. Such layers are known to occur in the process of brazing the transition metals by their own melts with Si3N4-base ceramics239 and also during the interaction of transition metals with silicon carbide.238 240 245... [Pg.199]


See other pages where Melting silicon carbides is mentioned: [Pg.26]    [Pg.201]    [Pg.318]    [Pg.361]    [Pg.444]    [Pg.465]    [Pg.16]    [Pg.17]    [Pg.33]    [Pg.124]    [Pg.198]    [Pg.2]    [Pg.26]    [Pg.201]    [Pg.540]    [Pg.228]    [Pg.528]    [Pg.60]    [Pg.60]    [Pg.71]    [Pg.469]    [Pg.459]    [Pg.628]    [Pg.285]    [Pg.316]    [Pg.221]    [Pg.15]    [Pg.934]    [Pg.934]    [Pg.244]    [Pg.312]    [Pg.136]    [Pg.55]    [Pg.462]    [Pg.274]    [Pg.138]    [Pg.941]   
See also in sourсe #XX -- [ Pg.685 ]




SEARCH



CARBIDES SILICON CARBIDE

Silicon carbide

Silicone carbide

© 2024 chempedia.info