Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanism from Solvent effect

Although many solution mechanistic tools are inappropriate for reaction studies in solids, their absence is more than compensated by the availability of other techniques that are unique to single crystals. Perhaps the most significant is X-ray diffraction, which can establish precise atomic coordinates not only for the starting material, but also for the environment in which reaction occurs. Availability of this kind of information puts discussions of mechanisms and solvent effects on a completely different footing from those for fluid reactions. [Pg.296]

Mechanism of Nonoxidative Thermal Dehydrochlorination. This subject is still very controversial, with various workers being in favor of radical, ionic, or molecular (concerted) paths. Recent evidence for a radical mechanism has been provided by studies of decomposition energetics (52), the degradation behavior of PVC-polystyrene (53) or PVC-polypropylene (54) mixtures, and the effects of radical traps (54). Evidence for an ionic mechanism comes from solvent effects (55) and studies of the solution decomposition behavior of a model allylic chloride (56). Theoretical considerations (57,58) also suggest that an ionic (El) path is not unreasonable. Other model compound decompositions have been interpreted in terms of a concerted process (59), but differences in solvent effects led the authors to conclude that PVC degrades via a different route (59). [Pg.319]

If reliable quantum mechanical calcnlations of reactant and transition state stnictures in vacnnm are feasible, treating electrostatic solvent effects on the basis of SRCF-PCM rising cavity shapes derived from methods... [Pg.838]

Nitric acid being the solvent, terms involving its concentration cannot enter the rate equation. This form of the rate equation is consistent with reaction via molecular nitric acid, or any species whose concentration throughout the reaction bears a constant ratio to the stoichiometric concentration of nitric acid. In the latter case the nitrating agent may account for any fraction of the total concentration of acid, provided that it is formed quickly relative to the speed of nitration. More detailed information about the mechanism was obtained from the effects of certain added species on the rate of reaction. [Pg.8]

For condensed species, additional broadening mechanisms from local field inhomogeneities come into play. Short-range intermolecular interactions, including solute-solvent effects in solutions, and matrix, lattice, and phonon effects in soHds, can broaden molecular transitions significantly. [Pg.312]

This variation from the ester hydrolysis mechanism also reflects the poorer leaving ability of amide ions as compared to alkoxide ions. The evidence for the involvement of the dianion comes from kinetic studies and from solvent isotope effects, which suggest that a rate-limiting proton transfer is involved. The reaction is also higher than first-order in hydroxide ion under these circumstances, which is consistent with the dianion mechanism. [Pg.482]

Photoinitiation of polymerization of MMA and styrene by Mn(facac)3 was also investigated, and it was shown that the mechanism of photoinitiation is different [33] from that of Mn(acac)3 and is subject to the marked solvent effect, being less efficient in benzene than in ethyl acetate solutions. The mechanism shown in Schemes (15) and (16) illustrate the photodecomposition scheme of Mn(facac)3 in monomer-ethyl acetate and monomer-benzene solutions, respectively. (C = manganese chelate complex.)... [Pg.248]

Both effects resulting from solvent cointercalation, the mechanical destruction and the higher irreversible specific charge losses, seriously complicate the operation... [Pg.395]

The evidence presented so far excludes the formation of dissociated ions as the principal precursor to sulfone, since such a mechanism would yield a mixture of two isomeric sulfones. Similarly, in the case of optically active ester a racemic product should be formed. The observed data are consistent with either an ion-pair mechanism or a more concerted cyclic intramolecular mechanism involving little change between the polarity of the ground state and transition state. Support for the second alternative was found from measurements of the substituent and solvent effects on the rate of reaction. [Pg.671]

Oae found that for both base- and acid-catalyzed hydrolysis of phenyl benzenesul-fonate, there was no incorporation of 0 from solvent into the sulfonate ester after partial hydrolysis. This was interpreted as ruling out a stepwise mechanism, but in fact it could be stepwise with slow pseudorotation. In fact this nonexchange can be explained by Westheimer s rules for pseudorotation, assuming the same rules apply to pentacoordinate sulfur. For the acid-catalyzed reaction, the likely intermediate would be 8 for which pseudorotation would be disfavored because it would put a carbon at an apical position. Further protonation to the cationic intermediate is unlikely even in lOM HCl (the medium for Oae s experiments) because of the high acidity of this species a Branch and Calvin calculation (See Appendix), supplemented by allowance for the effect of the phenyl groups (taken as the difference in between sulfuric acid and benzenesulfonic acid ), leads to a pA, of -7 for the first pisTa of this cation about -2 for the second p/sTa. and about 3 for the third Thus, protonation by aqueous HCl to give the neutral intermediate is likely but further protonation to give cation 9 would be very unlikely. [Pg.26]

The MD/QM methodology [18] is likely the simplest approach for explicit consideration of quantum effects, and is related to the combination of classical Monte Carlo sampling with quantum mechanics used previously by Coutinho et al. [27] for the treatment of solvent effects in electronic spectra, but with the variation that the MD/QM method applies QM calculations to frames extracted from a classical MD trajectory according to their relative weights. [Pg.4]

It has been possible to employ the heavy-atom solvent effect in determining the rate constants for the various intercombinational nonradiative transitions in acenaphthylene and 5,6-dichIoroacenaphthylene.<436,c,rate constants, which are not accessible in light-atom solvents due to the complexity of the mechanism and the low efficiency of intersystem crossing from the first excited singlet to the first excited triplet, can be readily evaluated under the influence of heavy-atom perturbation. [Pg.526]

In fact, the analogy between the mechanisms of heterolytic nucleophilic substitutions and electrophilic bromine additions, shown by the similarity of kinetic substituent and solvent effects (Ruasse and Motallebi, 1991), tends to support Brown s conclusion. If cationic intermediates are formed reversibly in solvolysis, analogous bromocations obtained from bromine and an ethylenic compound could also be formed reversibly. Nevertheless, return is a priori less favourable in bromination than in solvolysis because of the charge distribution in the bromocations. Return in bromination implies that the counter-ion, a bromide ion in protic solvents, attacks the bromine atom of the bromonium ion rather than a carbon atom (see [27]). Now, it is known (Galland et al, 1990) that the charge on this bromine atom is very small in bridged intermediates and obviously nil in /f-bromocarbocations [28]. [Pg.280]

Mechanistic interpretation of activation volumes on square-planar complexes is complicated by the geometry. The sterically less crowded complexes may have loosely bound solvent molecules occupying the axial sites above and below the plane. Replacing them in the formation of a five-coordinate transition state or intermediate may result by compensation in relatively small volume effects. It is therefore difficult to distinguish between Ia and A mechanisms from the value of the activation volume. Nevertheless, the AV values are negative and together with the second-order rate laws observed, point to an a-activation for those solvent exchange reactions. [Pg.39]


See other pages where Mechanism from Solvent effect is mentioned: [Pg.343]    [Pg.390]    [Pg.291]    [Pg.60]    [Pg.310]    [Pg.151]    [Pg.895]    [Pg.228]    [Pg.37]    [Pg.64]    [Pg.362]    [Pg.436]    [Pg.448]    [Pg.387]    [Pg.442]    [Pg.307]    [Pg.323]    [Pg.302]    [Pg.443]    [Pg.460]    [Pg.538]    [Pg.383]    [Pg.200]    [Pg.319]    [Pg.130]    [Pg.216]    [Pg.79]    [Pg.210]    [Pg.270]    [Pg.255]    [Pg.31]    [Pg.137]    [Pg.217]    [Pg.170]    [Pg.182]    [Pg.283]   
See also in sourсe #XX -- [ Pg.116 , Pg.238 ]




SEARCH



Solvent effects mechanisms

© 2024 chempedia.info